學術活動
量子材料
Probing non-equilibrium states at atomic scale by time-resolved scanning probe microscopy
浏覽次數:
主講人: 彭金波 (上海交通大學)
地點: beat365物理樓,西563會議室
時間: 2023年11月15日 (周三)下午3:00
主持 聯系人: 陳一<yichen@pku.edu.cn>
主講人簡介: 彭金波,上海交通大學李政道研究所副教授,李政道學者。2012年本科畢業于華中師範大學,2017年博士畢業于beat365官方网站量子材料中心(導師:江穎教授)。2017-2022年分别在德國雷根斯堡大學和日本築波大學進行博士後研究。主要從事凝聚态物理和表面物理方向的實驗研究,長期專注于研發國際尖端的具有超高空間和時間分辨率的掃描隧道顯微鏡(STM)和原子力顯微鏡(AFM)技術,實現對單分子及固體的超高時空分辨的成像和動力學研究。以第一/通訊作者(含共同)在Science, Nature, Nature Physics, Nature Communications等上發表多項高影響力的工作。入選國家和上海高層次青年人才計劃(海外),工作入選“2018年中國科學十大進展”,受邀參加諾貝爾獎獲得者大會,被評選為日本JSPS特别研究員、德國洪堡學者等。

摘要:

Non-equilibrium states of molecules or solids play crucial roles across a broad range of fields such as the photovoltaics, chemical reactions and phase transition, etc. The detection and control of local non-equilibrium states are extremely crucial for understanding and tuning many basic processes involving electron and energy transfer, but they remain a great challenge to date. Optical methods with the ultrafast laser have proven to be very powerful in detecting various non-equilibrium states, but they suffer from a poor spatial resolution which is about half the wavelength due to the optical diffraction limit. Scanning probe microscopies such as the scanning tunneling microscope (STM) and atomic force microscope (AFM) have the advantage of ultrahigh spatial resolution down to atomic level [1, 2]. However, they are usually only accessible to the equilibrium ground states due to their poor temporal resolution (~0.1 ms). Here I will show how we broke this constraint by developing a novel electronic pump-probe AFM technique, which allows us to probe the lifetimes of molecular excited states (triplet states) at atomic scale for the very first time [3]. The advantage in ultrahigh spatial resolution of our technique was demonstrated by atomically observing the triplet quenching induced by single oxygen molecules. In the end, I will briefly show how the temporal resolution was further improved by combining the STM with ultrashort optical or terahertz pulses, realizing the atomic spatial resolution and femtosecond temporal resolution simultaneously [4, 5]. Such a technique will make it possible to track various ultrafast dynamics at atomic scale such as molecular vibrations and rotations, phonons, carrier dynamics, spin dynamics, phase transitions, etc.

[1] Peng et al., Nature communications 9, 122(2018).

[2] Peng et al., Nature 557, 701 (2018).

[3] Peng et al., Science 373, 452 (2021).

[4] Terada et al., Nature Photonics 4, 869 (2010).

[5] Cocker et al., Nature Photonics 7, 620 (2013).