學術活動
量子材料
Routes to quantum anomalous Hall effect from magnetic topological insulators MnBi2Te4/(Bi2Te3)n
作者:Qihang Liu浏覽次數:
主講人: Qihang Liu
地點: beat365物理樓,西563會議室
時間: 2020年10月21日 (周三)下午4:00
主持 聯系人: 高鵬 <p-gao@pku.edu.cn>
主講人簡介: 劉奇航,南方科技大學副教授,本科及博士均畢業于beat365官方网站(2003-2012),曾任美國西北大學博士後、美國科羅拉多大學博爾德分校助理研究員;主要從事以密度泛函理論為主的凝聚态理論研究,研究興趣包括理解材料中新奇的電學,磁學,光學,缺陷,自旋極化,拓撲等物性,以及功能導向的新型材料設計及預測。工作期間以主要作者身份已發表包括Nat. Phys.、Nat. Commun.、Phys. Rev. X、Phys, Rev. Lett.、Nano Lett.、JACS等多篇學術論文;署名作者共計已發表學術論文60餘篇,Google Scholar統計引用超過3700次;2018年入選“國家特聘青年專家”。

摘要:

The rising of topological materials MnBi2Te4/(Bi2Te3)n with built-in magnetization provides a great platform for the realization of both Chern-insulator and axion-insulator phases, manifesting integer and half-integer quantum anomalous Hall (QAH) effects, respectively [1-3]. Using both model Hamiltonian and first-principles calculations, we demonstrate that rich 2D and 3D topological phase diagrams can be established with the mapping of MnBi2Te4/(Bi2Te3)n systems. For the 2D topological phases, we provide design principles to trigger integer QAH states by tuning experimentally accessible knobs, such as slab thickness and magnetization [2]. For the 3D topological phases, we find that the surface anomalous Hall conductivity in the axion-insulator phase is a well-localized hanging around e2/2h, depending on the magnetic homogeneity [3]. We then discuss the preconditions and several experimental proposals to reveal the surface anomalous Hall effect in MnBi2Te4/(Bi2Te3)n. Finally, some experimental progresses and theoretical insights on the issue of the surface gaps in MnBi2Te4/(Bi2Te3)n is discussed (if time permits) [4-7].

References
[1] C. Hu et al. Nat. Commun. 11, 97 (2020).
[2] H. Sun et al. Phys. Rev. Lett. 123, 096401 (2019).
[3] M. Gu et al. arXiv:2005.13943 (2020).
[4] Y. Hao et al. Phys. Rev. X 9, 041038 (2019).
[5] X. Wu et al. Phys. Rev. X 9, 041038 (2020).
[6] X. Ma et al. arXiv:2004.09123 (2020).
[7] R. Lu et al. arXiv:2009.04140 (2020).