學術活動
凝聚态
【凝聚态物理-beat365論壇 2024年第2期(總584期)】Quantum adversarial machine learning: from theory to experiment
浏覽次數:
主講人: 鄧東靈 教授(清華大學交叉信息研究)
地點: 物理大樓西563會議室
時間: 2023年2月29日(星期四) 下午3:00-4:30
主持 聯系人: 陳基 ji.chen@pku.edu.cn
主講人簡介: 鄧東靈,清華大學交叉信息研究院特别研究員,博士生導師,海外高層次人才青年項目、國家傑出青年科學基金獲得者。2007年獲南開大學物理、數學雙學士學位,2015年博士畢業于美國密西根大學,博士論文獲“Kent M. Terwilliger Memorial Thesis Prize”獎。2015-2018年在馬裡蘭大學聯合量子研究所從事博士後研究,2018年回國入職清華大學。主要研究方向為量子人工智能,已在Nature,Nature/Science子刊,PRL/PRX等期刊上發表論文90餘篇。

  Quantum adversarial machine learning is an emergent interdisciplinary research frontier that studies the vulnerability of quantum learning systems in adversarial scenarios and the development of potential countermeasures to enhance their robustness against adversarial perturbations. In this talk, I will first make a brief introduction to this field and review some recent progresses. I will show, through concrete examples, that typical quantum classifiers are extremely vulnerable to adversarial perturbations: adding a tiny amount of carefully crafted noises into the original legitimate samples may lead the classifiers to make incorrect predictions at a high confidence level. I will talk about possible defense strategies against adversarial attacks. I will also talk about a recent experimental demonstration of quantum adversarial learning with programmable superconducting qubits.