beat365
網站地圖
加入收藏
中文
English
首頁
中心概況
研究隊伍
科學研究
交流合作
人才培養
人才招聘
當前位置:
首頁
-
交流合作
-
專題學術講座
- 正文
大師講堂
專題學術講座
學術會議
中心報告會
專題學術講座
物理系seminar:Transport and Accretion Processes in Protoplanetary Disks: A New Paradigm
報告題目:
Transport and Accretion Processes in Protoplanetary Disks: A New Paradigm
報 告 人:
白雪甯 (CfA, Harvard)
報告時間:
2013年7月4日13點30分
報告地點:
理科樓B315
摘要:
The structure and evolution of protoplanetary disks (PPDs) are key to understanding many aspects of planet formation. Due to extremely weak level of ionization, the gas dynamics of PPDs is largely controlled by non-ideal magnetohydrodynamical effects, including Ohmic resistivity, Hall effect and ambipolar diffusion (AD). Most previous studies considered only the effect of Ohmic resistivity under the framework of magnetorotational instability (MRI) driven accretion with dead zones. We show via self-consistent local numerical simulations that the inclusion of ambipolar diffusion (AD) qualitatively changes the conventional picture. In the inner disk around 1 AU, the MRI is suppressed due to the inclusion of AD, and the disk becomes completely laminar. Instead, a strong magnetocentrifugal wind can be launched in the presence of a weak vertical field threading the disk that efficiently drives disk accretion. With a parameter survey, we find that wind-dominated accretion with laminar disk is likely to extend to about 5-10 AU. Beyond this radius, angular momentum transport is likely to proceed through a combination of wind and the MRI, and eventually completely dominated by the MRI in the outer disk. Our simulation results provide key ingredients for a new paradigm on the transport and accretion processes in PPDs.
版權所有 量子物質科學協同創新中心
本頁已經浏覽
次