# Spin Hall Effect and Optical Detection in Semiconductor Quantum Wells

Kai Chang SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China



28 March 2008, PKU, Beijing, China

# Outline

- Introduction
- Nonlinear Rashba model and Spin Relaxation
- Spin Hall Effect in narrow band-gap QW
- Directly optical detection of pure spin current
- Conlusions

**Collaborators** 

W. Yang, J. T. Liu, Z. Zhang, J. Li (SKLSM, IOS) Prof. S. C. Zhang (Stanford University)

Acknowledgments: NSFC Grant No. 60525405 and The innovation project of knowledge from CAS

# Introduction...







- 1. Power consumption---heat
- 2. Quantum effect

**Possible solution: Spintronics Limits: Room temperature spin injection and relaxation** 

# **Manipulation of spin in Semiconductors**

1, sp-d exchange interaction: DMS, e.g., GaMnAs 2, Laser pulse: **Optical Stark effect** 3, Relativistic effect: **Spin-orbit interaction** 

#### **Datta-Das transistor**, APL(1990)

![](_page_3_Figure_3.jpeg)

HH

#### DMS $\langle H_0 \hat{z} \rangle$ (a) $\Theta_{\mathit{Tip}}$ $\sigma^+$ pump ΗH $H_{Stark}\hat{x}$

#### **Optical Stark effect** $\Delta E_{stark}$ CB

# **Progress of spintronics**

## **Milestones**

![](_page_4_Figure_2.jpeg)

# **Origin of Rashba spin-orbit coupling**

![](_page_5_Figure_1.jpeg)

# **Symmetry**

![](_page_6_Figure_1.jpeg)

# **Spin-orbit interactions**

E. I. Rashba, JETP 1961

**Rashba SOI** Structural asymmetry (SIA) G. Dresselahus, Phys Rev 1955 **Dresselhaus SOI** Crystal inversion asymmetry(**BIA**)

![](_page_7_Figure_4.jpeg)

$$H_{R} \mid \zeta \sqrt[\mu]{\omega} \Delta \overline{k} \sqrt[\mu]{\hat{z}} \mid \zeta / \omega_{x} k_{y} 4 \omega_{y} k_{x} 0$$
  
$$\overline{k} \mid k_{x} \hat{x} 2 k_{y} \hat{y} 2 k_{z} \hat{z}$$

**R. Winkler**, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole System, Springer ,2003

![](_page_7_Picture_7.jpeg)

## Linear Rashba model

![](_page_8_Figure_1.jpeg)

## Linear Rashba model

$$H_{R} \mid \zeta \sqrt[\mu]{\omega} \Delta \overline{k} \sqrt[\beta]{\hat{z}} \mid \zeta / \omega_{x} k_{y} 4 \omega_{y} k_{x} 0$$
  
$$\overline{k} \mid k_{x} \hat{x} 2 k_{y} \hat{y} 2 k_{z} \hat{z}$$

![](_page_9_Picture_2.jpeg)

$$\Delta E = 2\alpha k_{\rm H}$$

![](_page_9_Figure_5.jpeg)

**R. Winkler and U. Rössler, PRB 48, 8918 (1993)** 

E. A. de Andrada e Silva et al., PRB 55, 16293 (1997)

- R. Winkler and U. Rössler, PRB 62, 4245 (2000)
- S. Lamari, PRB 64, 245340 (2001)

. . . . . . . . . . .

![](_page_10_Picture_0.jpeg)

# Gate Control of Spin-Orbit Interaction in an Inverted

Junsaku Nitta, Tatsushi Akazaki, and Hideaki Takayanagi

NTT Basic Research Laboratories, 3-1 Wakamiya, Morinosato, Atsugi-shi, Kanagawa 243-01, Japan

Takatomo Enoki

NTT System Electronics Laboratories, 3-1 Wakamiya, Morinosato, Atsugi-shi, Kanagawa 243-01, Japan (Received 23 July 1996)

![](_page_10_Figure_6.jpeg)

## **Effective-mass theory**

#### **Effective mass k·p theory**

the Bloch functions  $e^{i \mathbf{k} \cdot \mathbf{r}} \hat{u}_{\nu \mathbf{k}}(\mathbf{r}) \equiv e^{i \mathbf{k} \cdot \mathbf{r}} \langle \mathbf{r} | \nu \mathbf{k} \rangle$ 

$$\left[\frac{p^2}{2m_0} + V_0(\boldsymbol{r})\right] e^{i\boldsymbol{k}\cdot\boldsymbol{r}} u_{\nu\boldsymbol{k}}(\boldsymbol{r}) = E_{\nu}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{r}} u_{\nu\boldsymbol{k}}(\boldsymbol{r}) .$$

$$\left[\frac{p^2}{2m_0} + V_0 + \frac{\hbar^2 k^2}{2m_0} + \frac{\hbar}{m_0} \boldsymbol{k} \cdot \boldsymbol{p}\right] |\nu \boldsymbol{k}\rangle = E_{\nu}(\boldsymbol{k}) |\nu \boldsymbol{k}\rangle$$

#### **Considering SOI**

$$\begin{split} & [\frac{p^{2}}{2m_{0}} 2 V_{0} 2 \frac{k^{2}}{2m_{0}} 2 \frac{\hbar}{m_{0}} k \notin \phi 2 \frac{\hbar}{4m_{0}^{2}c^{2}} p \notin (\omega \Delta \subseteq V)] |nk\rangle | E_{n} |nk\rangle, \\ & \text{where} \quad \phi \mid p 2 \frac{\hbar}{4m_{0}^{2}c^{2}} \omega \Delta \subseteq V_{0}, \\ & |nk\rangle \mid \sum_{\tau, \omega \mid \Rightarrow \Leftrightarrow} c_{\tau, \omega'} |nk_{0}\rangle \cup |\omega'\rangle \end{split}$$

# **Effective-mass theory**

#### **Effective mass k·p theory**

$$\frac{1}{\tau \cdot \omega} \left[ \left[ \left( E_{\tau}(0) 2 \frac{k^{2}}{2m_{0}} \right] \iota_{\tau\tau} \iota_{\omega\omega} 2 \frac{\hbar}{m_{0}} \vec{k} \notin \vec{P}_{\tau\tau' \omega\omega'} 2 \div_{\tau\tau' \omega\omega'} c_{n\tau'\omega'}(k) + E_{n}(k)c_{n\tau'\omega'}(k), \right] \right]$$
where  $P_{\tau\tau' \omega\omega'} + \left\langle \tau \omega \right| \phi \left| \tau' \omega' \right\rangle,$ 

$$\div_{\tau\tau' \omega\omega'} + \frac{\hbar}{4m_{0}^{2}c^{2}} \left\langle \tau \omega \right| p \notin (\omega \Delta \subseteq V) \left| \tau' \omega' \right\rangle,$$
The envelope function approximation
$$\Phi(r) + \frac{1}{\tau'\omega'} \left[ \left( E_{\tau'}(0) 2 \frac{k^{2}}{2m_{0}} \right\} \iota_{\tau\tau'} \iota_{\omega\omega'} 2 \frac{\hbar}{m_{0}} \vec{k} \notin \vec{P}_{\tau\tau' \omega\omega'} 2 \div_{\tau\tau' \omega\omega'} \left| E_{n}(k) \cdot \cdot \cdot t_{\tau\omega'}(r) \right| E_{n}(k) \cdot \cdot t_{\tau\omega'}(r),$$

![](_page_13_Figure_0.jpeg)

# **Origin of Rashba spin-orbit coupling**

#### PHYS. REV. B 73, 113303 (2006) W. Yang and Kai Chang

v

 $H_{lh} \mid E_{v} 4V 2P 2Q;$  $H_{so} \mid E_{v} 4 \div 2V 2P.$ 

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

lines are obtained from Eqs. (3) and (5)

exact results, dashed

#### **Origin of Rashba spin splitting**

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

The formulism can explain why large RSS in HgTe, but small in graphene! Origin of the nonlinear behavior of RSOI!

# **SOI in Graphene**

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

The spin-orbit interaction near the K point

1, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005)(Q

2, Phys. Rev. B 74, 165310 (2006) From MacDonald' group

 $\varsigma_{R}$  -0.0111meV under F=50V/300nm -1667kV/cm!

#### **SOI depends on the bandgap and the atomic mass!**

# **Anisotropy of Rashba spin splitting**

![](_page_20_Figure_1.jpeg)

## **Two-coefficient nonlinear Rashba model**

$$\Delta \boldsymbol{E} = 2\boldsymbol{\alpha}\boldsymbol{k}_{//}$$

$$\Delta \boldsymbol{E} = \frac{2\boldsymbol{ok}_{//}}{1 + \boldsymbol{\beta k}_{//}^2}$$

#### GaAs/AlGaAs

#### InGaAs/GaAs

![](_page_22_Figure_5.jpeg)

• Many-body effect

$$H\Phi(z) \mid E\Phi(z)$$

$$H \mid H_{K} 2V_{conf}(z) 2V_{H}(z)$$

$$\left|\left\langle \mathcal{E}_{z}^{\text{ext}}\right\rangle = \frac{e}{\epsilon\epsilon_{0}} \left[N_{A}(z_{d} - \langle z \rangle) + \frac{N_{c_{z}}}{2}\right]$$

$$\mathcal{E}_{z}^{\text{ext}}(z) = (1/e)\partial_{z}V_{H}(z) = \frac{e}{\epsilon\epsilon_{0}} \left[N_{A}(z_{d} - z) + N_{s} - \int_{-\infty}^{z} dz' \rho(z')\right]$$

Self-consistent eight-band calculation including Hatree potential We try to include the exchange-correlation interaction in the next step.

# • Delta Doping In Quantum Well

Lz=12.2nm, Ne=3.47× 10<sup>12</sup>/cm<sup>2</sup>

![](_page_24_Figure_2.jpeg)

• Free standing Quantum Wire

![](_page_25_Figure_1.jpeg)

E=100(kv/cm) is added in the z direction

![](_page_25_Figure_3.jpeg)

![](_page_26_Figure_0.jpeg)

**Family of spin relaxation mechanisms:** 

- D'yakonov-Perel' (DP) mechanism(SOI)
- Elliot-Yafet (EY) mechanism(SOI)
- Bir-Aronov-Pikus (BAP) mechanism(exchange)
- Hyperfine (s-d) mechanism(nuclear, magnetic ions)

![](_page_27_Figure_6.jpeg)

## D'yakonov Perel' (DP) mechanism:

#### • Origin: spin-orbit interaction: RSOI and DSOI

![](_page_28_Figure_3.jpeg)

**Equation of motion given by** *Liouville equation*:

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [H, \rho],$$

**Density matrix:** 

$$\boldsymbol{\varsigma}) := \begin{pmatrix} \varrho_{\uparrow\uparrow}(\mathbf{k}) & \varrho_{\uparrow\downarrow}(\mathbf{k}) \\ \varrho_{\downarrow\uparrow}(\mathbf{k}) & \varrho_{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix} \quad \varrho(\mathbf{k}) \end{pmatrix}$$

**Decay of the components:** 

J. Kainz, U. Rössler and R. Winkler, Phys. Rev. B 70, 195322 (2004); N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999)

- 1, diagonal elements (occupation number) T<sub>1;</sub>
- 2, off-diagonal elements (decoherence) T,

H=H<sub>0</sub>+H<sub>im</sub>+H' H'=H<sub>SO</sub> scattering

![](_page_29_Figure_10.jpeg)

![](_page_29_Figure_11.jpeg)

![](_page_29_Figure_12.jpeg)

#### Comparing between widely used linear Rashba model And our nonlinear Rashba model

![](_page_30_Figure_2.jpeg)

# Anomalous SOI in InAs/GaSb QW

![](_page_31_Figure_1.jpeg)

J. Li, Kai Chang, APL (in press)

# Anomalous SOI in InAs/GaSb QW

![](_page_32_Figure_1.jpeg)

# **Conclusion:**

Nonlinear Rashba model can give correct behavior at large in-plane momentum. Nonlinear behavior of RSS is universal phenomenon in semiconductor nanostructures; can lead to surprising consequences, e.g., spin relaxation.

![](_page_34_Picture_0.jpeg)

E. H. Hall, (1855-1938)

## **The Hall Effect**

Classic Hall Effect (1879); Anomalous Hall Effect (1881); Quantum Hall Effect(1978;1982); Spin Hall Effect (1971, 2004).

What is the spin Hall effect?

Electric field induces transverse spin current due to spin-orbit coupling

![](_page_35_Figure_0.jpeg)

Extrinsic Spin Hall Effect: impurity scattering D'yakonov and Perel' /JETP 8[>80\_ Hirsch /PRL 8[[[03#Zhang /PRL 97770

**Intrinsic Spin Hall Effect: band effect (SOI)** Murakami, Nagaosa, Zhang, Science (2003);

J. Sinova et al (PRL 2004)

![](_page_36_Figure_0.jpeg)

#### **The Intrinsic Spin Hall Effect**

Berry phase in momentum space Independent of impurities

## **The intrinsic Spin Hall effect**

![](_page_37_Figure_1.jpeg)

PRL(2003) J.Sinova, D.Culcer, Q. Niu, A. H. MacDonald

## **Spin Hall effect**

## **Kubo linear response theory:**

$$\frac{\sigma_{xv}^{\text{sH}}(\omega) = \frac{e\hbar}{r} \sum_{V} (f_{n',k} - f_{n,k})}{\prod_{k,n \neq n'}} \times \frac{\text{Im}[\langle n'k | \hat{j}_{\text{spin}\,x}^z | nk \rangle \langle nk | \upsilon_y | n'k \rangle}{(E_{nk} - E_{n'k})(E_{nk} - E_{n'k} - \hbar\omega - \mu)}$$

# Linear Rashba Model: (PRL(2004))

$$\sigma_{\rm sH} \equiv -\frac{J_{s,y}}{E_x} = \frac{e}{8\pi}, n_{\rm 2D} > n_{\rm 2D}^*$$

$$\sigma_{\rm sH} = \frac{e}{8\pi} \frac{n_{\rm 2D}}{n_{\rm 2D}^*}, \qquad n_{\rm 2D} < n_{\rm 2D}^*$$
$$n_{\rm 2D}^* \equiv m^2 \lambda^2 / \pi \hbar^4$$

J. Inoue, G. E. Bauer and L. W. Molenkamp PRB (2004)

- 1, single parabolic band,
- 2, linear response theory,
- 3, linear Rashba model,
- 4, short-range potential, Born approximation.

Conclusions:

- 1, vanishing spin Hall effect including the vertex correction
- 2, dominant forward scattering leads to a nonvanishing SHE.

•Sinova [PRL, 2003]

Inoue

- Inoue [PRB, 2004] 1 ( )
- S. Murakami [PRL (2004)]
- Raimondi [PRB, 2005]
- Dimitrova [PRB,2005]
- Krotkov [PRB, 2006]
- Inoue

(

Rashba

ι)

Rashba

• Khaetskii [PRL 2006]

Rashba

Born

SHE

#### Controversy Does Intrinsic SHE vanish in 2DEG and/or 2DHG

- Conclusions SHE vanishes at
- 1, Linear Rashba model,
- 2, parabolic band,
- 3, short-range impurity potential, Born approximation.

![](_page_41_Figure_5.jpeg)

# **Unsolved:**

## PRL 100, 056602(2008)

- 1, Long-range potential? (Khaetskii 2006 SHE still vanishes!)
- 2, Beyond Born approxiamtion

#### The operators in the eight band Kane model

$$\phi_{1} = S \uparrow,$$

$$\phi_{2} = S \downarrow,$$

$$\phi_{3} = \left| \frac{3}{2}, \frac{3}{2} \right\rangle = \frac{1}{\sqrt{2}} (X + iY) \uparrow,$$

$$\phi_{4} = \left| \frac{3}{2}, \frac{1}{2} \right\rangle = \frac{i}{\sqrt{6}} \left[ (X + iY) \downarrow -2Z \uparrow \right],$$

$$\phi_{5} = \left| \frac{3}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{6}} \left[ (X - iY) \uparrow +2Z \downarrow \right],$$

$$\phi_{6} = \left| \frac{3}{2}, -\frac{3}{2} \right\rangle = \frac{i}{\sqrt{2}} (X - iY) \downarrow,$$

$$\phi_{7} = \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} \left[ (X + iY) \downarrow +Z \uparrow \right],$$

![](_page_42_Figure_2.jpeg)

#### For the operators O:

#### PRL 100, 056602(2008)

$$\tilde{\mathbf{O}}_{j\mathbf{k},j'\mathbf{k}'} = \mathbf{O}_{j\mathbf{k},j'\mathbf{k}'} + \sum_{l\mathbf{k}''} [\mathbf{O}_{j\mathbf{k},l\mathbf{k}''}(E-E_l)^{-1}(H_{kp})_{l\mathbf{k}'',j'\mathbf{k}'} + (H_{kp})_{j\mathbf{k},l\mathbf{k}''}(E-E_l)^{-1}\mathbf{O}_{l\mathbf{k}'',j'\mathbf{k}'}]$$

The operators in the eight band Kane model

$$[\tilde{v}_{\alpha}(\mathbf{k})]_{jj'} = \frac{p_{jj'}^{\alpha}}{m_0} + \delta_{jj'} \frac{\hbar k_{\alpha}}{m_0} + \frac{\hbar}{4m_0^2 c^2} (\boldsymbol{\sigma} \times \nabla V)_{\mu\mu'} + \frac{\hbar}{m_0^2} \sum_{\beta,l} (\frac{p_{jl}^{\alpha} p_{lj'}^{\beta}}{E - E_l} k_{\beta} + k_{\beta} \frac{p_{jl}^{\beta} p_{lj'}^{\alpha}}{E - E_l}).$$

二维电子气的二维直流自旋霍尔电导率  $\sigma^{2D}_{\alpha\beta\gamma} = \langle J^{\beta}_{\alpha} \rangle / E_{\gamma}$ 

$$\sigma^{3D}_{\alpha\beta\gamma} = \frac{1}{\hbar V} \lim_{\omega \to 0} \frac{e}{i\omega} \left[ G^r_{AB}(\omega) - G^r_{AB}(0) \right]$$

PRL 100, 056602(2008)

#### We adopt:

- 1 **8band Hamiltonian** in axial approximation ( $v_2 = v_3$ )
- 2 Green function: self-consistent Born approximation

![](_page_44_Figure_3.jpeg)

$$\overset{O}{\swarrow} = \overset{\land}{\underset{g}{\swarrow}}$$

**Bethe-Salpeter equation** 

![](_page_44_Figure_6.jpeg)

## **Spin Hall effect**

![](_page_45_Figure_1.jpeg)

#### Intrinsic spin Hall conductivity $\omega_{sH}$ with vertex correction

![](_page_46_Figure_1.jpeg)

#### **Spin Hall effect**

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

# **Conclusions:**

- Unified description of Spin Hall effect;
- Switching of SHE utilizing the external electric field;
- Could provides us a possible way to distinguish extrinsic and intrinsic Spin Hall effects.

# Optical detection of spin current

Pure spin current: the spin-up and spin-down electron currents have equal magnitudes but travel in opposite directions vanishing charge current and total spin No conventional magneto-optical effects

Asymmetric distribution in k space f(-k)=f(+k) = 0

Transition rate of QUIC: W(-k)=0, W(+k) 0

![](_page_50_Figure_4.jpeg)

# **Theory:**

The Luttinger-Kohn Hamiltonian:

$$H_{h}(k,\theta,\varphi) = \frac{\hbar^{2}k^{2}}{2m_{0}} \begin{pmatrix} H_{h} & L & M & 0 \\ L^{*} & H_{l} & 0 & M \\ M^{*} & 0 & H_{l} & -L \\ 0 & M^{*} & -I^{*} \sqrt{H_{y}} \end{pmatrix}_{\mathcal{M}^{*}} - \frac{\hbar^{2}k^{2}}{2m_{0}}\gamma_{1}$$

where

$$H_{h} = -\gamma_{2} \sin^{2} \theta + 2\gamma_{2} \cos^{2} \theta$$
$$H_{l} = +\gamma_{2} \sin^{2} \theta - 2\gamma_{2} \cos^{2} \theta = -H_{h}$$
$$M = -\sqrt{3}\gamma_{2} \sin^{2} \theta e^{-2i\varphi}$$
$$L = i2\sqrt{3}\gamma_{2} \cos \theta \sin \theta e^{-i\varphi}$$

#### The Valkov-type solution

$$\dots_{c,v}(\mathbf{k},r,t) \mid u_{c,v}(\mathbf{k},r) \exp[i\mathbf{k} \notin \mathbf{r} \, 4 \, i \, \overline{\mathcal{O}}_{c,v}(\mathbf{k})t \, 2 \, \frac{ie}{m_{c,v}} \Big|_{0}^{t} \mathbf{k} \notin A(\vartheta) \, d\vartheta]$$

The transition rate is calculated using Fermi golden rule:

$$S \mid 4\frac{i}{\hbar} \Big|_{4\leftarrow}^{\leftarrow} dt^{\mathbb{N}} \Big| d^{3}r... 1_{c} (\mathbf{k}, r, t^{\mathbb{N}}) \frac{4e}{m_{0}c} A \notin P..._{v} (\mathbf{k}^{\mathbb{N}}, r, t^{\mathbb{N}})$$

The transition rate

$$w/\mathbf{k} = \lim_{t \downarrow \leftarrow} \frac{d}{dt} |S|^{2}$$

$$|\{ \bigotimes_{\mathbb{W}} \frac{\xi_{1}}{2} \int_{-\infty}^{2} |\mathbf{p}_{vc} \notin \mathbf{a}_{1}|^{2} A_{1}^{2} 2 |\mathbf{p}_{vc} \notin \mathbf{a}_{2}|^{2} A_{2}^{2} 2 A_{1}A_{2} \frac{\xi_{1}}{2}$$

$$\forall \mathbf{p}_{vc} \notin \mathbf{a}_{1} \theta^{1} / \mathbf{p}_{vc} \notin \mathbf{a}_{2} \theta \exp i(2\pi_{1} 4 \pi_{2}) 2 / \mathbf{p}_{vc} \notin \mathbf{a}_{1} \theta / \mathbf{p}_{vc} \notin \mathbf{a}_{2} \theta^{1} \exp i(42\pi_{1} 2 \pi_{2}) \beta$$

where

$$\xi_1 \mid \frac{eA_1}{\varpi cm_{cv}} \mathbf{k} \notin \vec{a}_1, \frac{1}{m_{cv}} \mid \frac{1}{m_c} 4 \frac{1}{m_v}$$

Consider  $\varpi$  and  $2\varpi$  beams are polarized along the x direction, the electric fields are given by

 $\mathbf{E}/\boldsymbol{\varpi} \| E/\boldsymbol{\varpi} e^{i\pi_1} \hat{x}$  $\mathbf{E}/2\boldsymbol{\varpi} \| E/2\boldsymbol{\varpi} e^{i\pi_2} \hat{x} \| E/2\boldsymbol{\varpi} e^{i\pi_2} \frac{\psi}{\hat{x}} 2 i\hat{y} \| 2/\hat{x} 4 i\hat{y} \|$  Magneto-optical Effects: Faraday Rotation

$$\theta_F(\omega) = \frac{\omega}{c} Re(N_+ - N_+)$$

$$N_{+} - N_{-} \propto W_{+}(+k) + W_{+}(-k) - W_{-}(+k) - W_{-}(-k)$$

$$= \underbrace{-\underbrace{\left\{ -\frac{f_{-}}{2} + \frac{f_{-}}{2} + \frac{f_{-}}{$$

If fd=fu (Pure spin current ) Conventional Magneto-optical Effect vanishes, but FR of QUIP appears

![](_page_54_Figure_1.jpeg)

Contour map of the Faraday rotation angle  $\chi_F/\sigma rad0$  as a function of transition energy and the relative phase of the two fields  $2\pi_8 4\pi_9$ . The pure spin carriers is along the k<sub>x</sub> direction.

![](_page_55_Figure_1.jpeg)

Contour map of the Faraday rotation angle  $\chi_F/\sigma rad0$ #as a function of transition energy and the polar angle  $\chi$  of the direction of pure spin carriers for  $2\pi_8 4\pi_9$ |7.

![](_page_56_Figure_1.jpeg)

Contour map of the Faraday rotation angle  $\chi_F/\sigma rad0$  as a function of transition energy and the polar angle  $\pi$  of the direction of pure spin carriers for  $2\pi_8 4\pi_9 | 7$  and  $\chi=90$ .

![](_page_57_Figure_1.jpeg)

# **Conclusions:**

Quantum interference Faraday rotation provides us a possible way to detect spin current directly, and help us to distinguish extrinsic and intrinsic Spin Hall effects.

![](_page_59_Picture_0.jpeg)

# Thank you for your attention!