CRYSTALLINE and QUASI-CRYSTALLINE INTERFACES

FROM ORDER TO DISORDER

L. PRIESTER Professor emeritus Université Paris 11 ICMPE/CNRS, Thiais, France

Beijing, may 2012

characterized by a rotation R (θ [uvw]) or by a coincidence index

 $\Sigma = \Box \Box \Box \rho$

ho : density of common nodes in the GB region

A GRAIN BOUNDARY at DIFFERENT SCALES

EVOLUTION OF THE CONCEPT OF GB ORDER

- 1 Amorphous cement (W. Rosenhain and D.J. Ewen, J. inst. Metals 8 (1912) 149)
- 2 Periodic distribution of good fit and bad fit regions

W.T. Read and W. Shockley, Phys. Rev. 78 (1950) 275

W. Bollmann, "Crystal defects and crystalline interfaces", Springler, Berlin (1970)

Outline

3 - Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1 - 55

4 - Quasi periodicity of structural units

D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

5 - Amorphous state of some GBs ?

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

EVOLUTION OF THE CONCEPT OF GB ORDER

- 1 Amorphous cement (W. Rosenhain and D.J. Ewen, J. inst. Metals 8 (1912) 149)
- 2 Periodic distribution of good fit and bad fit regions

dislocations

Some examples of intrinsic

dislocations

Primary intrinsic dislocations in low angle (2) grain boundary in a Fe-Mo alloy

Secondary intrinsic dislocations in a high-angle (85.5) grain boundary in alumina (oxide)

OUTLINE

The structural unit model

Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1 - 55

Quasi-crystalline interfaces

Quasi periodicity of structural units

D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

Amorphous state of some GBs ?

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

STRUCTURAL UNIT \equiv POLYHEDRAL CLUSTER OF ATOMS

Equivalent to the elemental cells in crystals (cube, hexagon ...)

Limited number of polyhedra

Analogy with the hard sphere model of liquid structure - 5 similar clusters (Bernal - 1964)

STRUCTURAL UNIT MODEL GEOMETRY

- Rational ratio m/n \Rightarrow Periodic grain boundary

- Irrational ratio m/n \Rightarrow Quasi-periodic grain boundary

STRUCTURAL UNIT MODEL PRINCIPLE

Any long period GB may be described as a sequence of structural units of two short period (favored) GBs.

Series for symmetrical tilt GB around <110> for aluminium (FCC)

A given GB (same R and θ) in different materials

The shapes of the structural unit differs but the period is similar

Description in terms of Structural Units (SU)

VALIDITY of SU MODEL for FACETTED GB - Near []9 (Cu)

Symmetrical {221} facet р

Asymmetrical facet

STRUCTURAL UNIT MODEL FOR TWIST GBs

Example of Σ 85 - 8.80 [001]

"STRUCTURAL UNITS/ INTRINSIC DISLOCATIONS

HRTEM IMAGES and HYDROSTATIC STRESS FIELDS

STRUCTURAL UNIT MODEL : Multiplicity of descriptions

A favored GB may be described by differents SUs whose the energies are very $\downarrow\downarrow$

Any intermediate GBs may be constituted by different combinations N of these

All the N configurations are not stable Comparisons with the hydrostatic stress field and with the HRTEM images

Examples of multiplicity of descriptions

STRUCTURAL UNIT DISTORTION

 Σ = 9: unit E formed by two distorted and rotated A units Σ = 27: period = EEA but some E units are distorted

SU DISTORTION \Rightarrow HIERARCHY of GB DESCRIPTIONS

9(221) could be described by A and D units but strong **distortion** $\downarrow \downarrow$

Better description by E unit \Rightarrow then use of E for the structure of $\Box 11$ (332)

9 appears as a **delimiting** GB

HIERARCHY OF GB DESCRIPTIONS

General rational GBs (rational ratio m/n of A and B units)

- As the order of the description increases \Rightarrow the distortions of the SUs decreation - The atomic description requires the knowledge of the basic structures

HOW TO GENERATE the SEQUENCE of SUs ?

 $\mathbf{p} = \mathbf{m}\mathbf{u}_{\mathbf{A}} + \mathbf{n}\mathbf{v}_{\mathbf{B}}$

There is a huge number of ways for arranging m units A and n units B in a periodic fashion

 $W = \frac{(m + n - 1)!}{m! n!}$ (For m = 13 and n = 19, W = 10.855.425)

THUS

To determine the sequence of structural units, it is necessary to use:

- an algorithm

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A 309 (1983) 1.

Main assumption: The boundary structure changes in as smooth and continuous manner as possible when θ varies

- a strip band method (analogous to what is used for quasicrystallography),

A.P. Sutton, Prog. Mat. Sci. 36 (1992) 167.

ALGORITHM to DETERMINE THE S.U. SEQUENCE in a GB

STRIP METHOD for determining the SU sequence in a GB

OUTLINE

The structural unit model

Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1 - 55

Quasi-crystalline interfaces

Quasi periodicity of structural units

D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

Amorphous state of some GBs ?

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

HOW TO GENERATE QUASIPERIODIC SEQUENCES

ALGORITHM (Levine and Steinhard, 1984)			
For irrational tilt GBs: $m_A / n_B = m/n_+ \lambda$ rational irrational $\lambda^{r_1} = \tau = (1 + \sqrt{5})/2$			
			Golden number
$\mathbf{u}_{A} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{v}_{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Self - similar sequence obtained by applying the operation M = $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ Then repeat			
men repeat	1		(det $M = -1$)
Number of iterations	Sequence of US	m _A / n _B	
0	AB	1/1	
1	BAB	1/2	Quasiperiodic GBs are
2	BABBA	2/3	the limits of periodic
3	BABBABAB	3/5	GBs with increasing
4	BABBABABBABBA	5/8	periods
\Downarrow	\downarrow	\Downarrow	
∞	Quasi-periodicity	1/ τ	

STRIP METHOD

Irrational slope of the E line in the section/projection

Quasiperiodic Structure of a GB in gold

J.M. Pénisson and al., Mat.Sci. Forum, Trans Tech Pub. 294-296 (1999)

OUTLINE

The structural unit model

Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1 - 55

Quasi-crystalline interfaces

Quasi periodicity of structural units

D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

Amorphous state of some GBs ?

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

CRYSTALLINE / AMORPHOUS STATE of a Σ = 29 TWIST GB in SILICON

Crystalline GB (relaxed at low T) Excess energy (eV/atom)

Amorphous GB (relaxed at high τ)

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435

Distinction between ORDER and ENERGY

 \downarrow not controlled by the order at large distances (periodicity))

controlled by the short-distance order or local arrangement of atoms (

z [a_]

ENERGY