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Luttinger Liquid and Momentum Resolved Tunneling between Quantum Wires

Luttinger liquid model of 1D interacting quantum system

• The Luttinger liquid is a stable �xed point of 1D quantum systems with gapless

excitations

• The Luttinger liquid systems of 1D interacting Ft8dtmationgeena



Schematic Diagram of Experimental Setup
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Tunneling conductance is G = dIT/dVSD. Ex-

periments measure dG/dVg to pick out physics

sensitive to density.

Model geometry, charge density distribution

r(x) and gate voltage Vg
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Theory of Tunneling Conductance

At zero temperature, only the tunneling between ground states contributes. The tunneling

conductance G µ |M(k+)|2 + |M(k−)|2, where

k± =±klower
F + eBd/h̄ ,

and

M(k) = 〈YN|c†
k|YN−1〉 .

It is instructive to de�ne a \quasi-wavefunction":

Y
N
eff(x)≡ 〈YN−1

g |ys(x)|YN
a〉 ,

then

M(k) =
Z

dxeikx
Y

N∗
eff (x).

For non-interacting wire YN
eff is simply the wavefunction of last occupied electron.

4



Overall Features of Experimental Data

Key Features:

• Extended state: density n changes

continuously with gate voltage Vg,

momentum dependence of tunnel-

ing sharply peaked at k =±kF(n).

• Localized state: density n changes

discretely with gate voltage Vg, mo-

mentum dependence of tunneling

extended over a wide range of k.
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Self-consistent Con�ning Potential Generated by Interaction?

Veff
VG
EF

hypothetical self-consistent potential in the localized phase
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Part I: Momentum Dependence of Tunneling Conductance

Basic features of momentum distribution:

• Broad momentum distribution, implying

localized electrons

• Typically two broad peaks, the separation

between which widens with increasing parti-

cle number N

• Last Coulomb blockade peak has single

peak in momentum distribution
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Non-interacting Electrons, T = 0, Box with Hard Wall

As large N, |M(k)|2 becomes peaked at kN = Np/L with width dk = 2p/L.
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Screened Coulomb Interaction Potential

The Coulomb interaction in the short upper wire is assumed to have a short-range cuto�

due to the �nite width of the wire and long-range cuto� due to screening by the more

conducting lower wire.

Ṽeff(q) = Ṽ0(q,Wu)− Ṽ 2
0 (q,d)

Ṽ0(q,Wl)
,

where Ṽ0(q,W ) =
R

¥

−¥
dx eiqx√

x2+W2
= 2K0(Wq). K0 is modi�ed Bessel function.
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Formation of Quasi-Wigner Crystal Order with Lowering Density

Instead of the Friedel oscillation of frequency 2kF, clear oscillations of frequency 4kF show

up, both in density and in density-density-correlation, at low density. Here density-density

correlation function is de�ned as 1
1−x

R 1−x
0 r(x′)r(x′+ x)dx′.
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Ground State Tunneling: Exact-Diagonalization

|M(k)|2 is insensitive to interactions. Following plot show |M(k)|2 for tunneling from N = 3
to N = 4 state.
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Spinless/Polarized Electrons

Under the experimental parameters, spinless electrons are essentially non-interacting for

both high and low density.
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Large-N limit: Ground State Tunneling

For large but �nite N and not too close to wall, Luttinger liquid theory gives an estimate

of the ground state quasi-wavefunction as de�ned before:

Y
N
eff(x)∼

1√
LNa

h
sin
�

px
L

�i1
2(aend−a)

sin(kFx) ,

where tunneling exponent for bulk and end is given by Luttinger liquid interaction parameter

g as a = (g+g−1−2)/4 and aend = (g−1−1)/2, respectively. A normalization factor Ng

is used so that the integrated areas under the three curves are the same.
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Estimates of E�ective Heisenberg Exchange Constant J

At strong interaction, the dynamics of system can be described by Heisenberg model. The

Heisenberg exchange parameter J can be extracted from gap D between ground state and

�rst excited state. For N = 2 J = D and for N = 4 J = 1.5178D.
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Tunneling Conductance at Finite Temperature

Total Conductance G = C(B(k+)+B(k−)), where

B(k) = å
ags

|〈YN
a |c†

ks
|YN−1

g 〉|2wag ,

wag = e−b [EN−1
g −m(N−1)] f (eag)

= e−b (EN
a−mN)[1− f (eag)] ,

k± =±kl
F + eBd/h̄ .

eag = EN
a −EN−1

g ,

C =
pe2

2h̄
l

2
bnL

e−b mN

ZN + e−b mZN−1
,
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Finite Temperature and Mixing Spins: Exact Diagonalization

For strong repulsive interaction, spin excitation energy scale D = J/N may become very

small. Three energies scales are important: spin gap D, Zeeman energy EZ and thermal

energy kBT . Following picture shows tunneling from N = 1 to N = 2: the case of sin-

glet ground state (EZ < D), triplet ground state (EZ > D) and high temperature mixed

state(EZ,D� kBT � Dcharge).
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Finite Temperature and Mixing Spins: Free Spin Regime and Large N limit

If J� kBT � h̄vckF , spin con�gurations have equal thermal weight but there’s no charge

excitation, we �nd a spectral weight as following:
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uctuation of electron position. g is the

Luttinger liquid interaction parameter.
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Conclusions for Part I

We investigated the momentum dependence of tunneling matrix elements from a in�nite

wire into short quantum containing interacting electrons.

• For N ≤ 4 exact diagonalization is carried out, ground state tunneling matrix element

|M(k)|2 is computed.

• Large N calculations of tunneling amplitude, both for ground state tunneling and for free

spin regime, are carried out using Luttinger liquid theory.

Other Possible Factors in Accounting for Experimental Observation

• Soft instead of hard wall con�nement: more spectral weight at center.

• Partial spin polarization

• Asymmetry of con�nement potential
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Part II: Electronic States of Low Density Region

Model geometry for the electronic density distribution r(x) and gate potential Vg(x)
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The Restricted Hartree-Fock Hamiltonian

Assumptions and simpli�cations of the Hartree-Fock model:

• Spin restricted to be either aligned or anti-aligned with magnetic �eld B

• Two subbands corresponding to di�erent transverse modes in the quantum wire

• Electrons in di�erent subbands interact only through Hartree terms

Hysb(x) =− h̄2

2m∗
¶ 2ysb(x)

¶x2 +(VG(x)+Db)ysb(x)+ mBBSzysb(x)

+VH(x)ysb(x)−
Z

dx′V sb
F (x,x′)ysb(x′)

VH(x) =
Z

dx′( å
i,s ′,b′
|yis ′b′(x′)|2)Veff(x− x′)

V sb
F = å

i
yisb(x)y∗isb(x

′)Veff(x− x′).
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Magnetic Phases at the Low Density Region

• The emergence of an antiferromagnetic order at the low density region (left)

• The emergence of spin-aligned region at the center of the wire (right)
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Discrete Density Changes in the Spin-aligned Phase

Abrupt density rearrangements occur due to the successive expulsion of a single electron

from the spin-aligned region
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Nature of Electronic States in the Spin-aligned Region

• The wavefunctions near the Fermi level have large weights near the center

• No sign of self-consistent barrier at the ends of spin-aligned region

• Little spectral weight near k = 0 in the momentum-dependent tunneling matrix element

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8
x (µm)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  100  200  300  400  500

|M
(k

)|2

kL

highest occupied state

highmany-bodyte

Left wavefunction of N = 7 solution at E f Right transition from N = 7 to N = 8 solutions

23



Unrestricted Hartree-Fock in a Homogeneous system: E�ects of Canting in
the Antiferromagnetic Phase

• The correction to the energy per unit cell due to canting is small in the range where

the ground state is antiferromagnetic

• The Sx magnetization is small for canted solution at r = 16mm−1, where the system

make a transition to a ferromagnetic ground state
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Conclusions for Part II

We investigated the density and spin con�guration an inhomogeneous quantum wire using

the restricted Hartree-Fock method. We found:

• When lowering its density, the depleted region goes from a non-magnetic state to an

antiferromagnetic state, and �nally to a spin-aligned state sandwiched by antiferromag-

netic states

• In the spin-aligned phase, the spin-aligned region undergoes abrupt density changes by

successively losing a single electron

• The wavefunctions near the Fermi surface are relatively localized near the center, but

they are not Coulomb-blockade states con�ned by barrier potentials

• Additional mechanisms, such as impurity potentials or multiple spin state contributions,

are needed to explain the observed large spectral weigh near k = 0 in the momentum

dependent tunneling

• In our model, the e�ects due to the canting of the spins in the unrestricted Hartree-Fock

model are small

25


