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Luttinger Liquid and Momentum Resolved Tunneling between Quantum Wires

Luttinger liquid model of 1D interacting quantum system

e The Luttinger liquid is a stable xed point of 1D quantum systems with gapless
excitations

e The Luttinger liquid systems of 1D interacting Ft8dtmationgeena



Schematic Diagram of Experimental Setup

Tunneling conductance is G =dIt /dVsp. Ex-
\ d | periments measure dG,/dV; to pick out physics
\ sensitive to density.
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Model geometry, charge density distribution
I (x) and gate voltage Vg




Theory of Tunneling Conductance

At zero temperature, only the tunneling between ground states contributes. The tunneling
conductance G [M(ky)|?+ |M(k_)|?, where

ke = £klo%er | oBd /R,

and
M(k) = (YNeg [ YN ) .

It is instructive to de ne a \quasi-wavefunction":
Yer(¥) = (Yg Hys () Y3) ,

then Z _
M(k) = dxe™VYl(x).

For non-interacting wire Y% is simply the wavefunction of last occupied electron.



Overall Features of Experimental Data

Key Features:

e Extended state: density n changes
continuously with gate voltage Vg,
momentum dependence of tunnel-
ing sharply peaked at k = +kg(n).

e Localized state: density n changes
discretely with gate voltage Vy, mo-
mentum dependence of tunneling
extended over a wide range of k.



Self-consistent Con ning Potential Generated by Interaction?

hypothetical self-consistent potential in the localized phase



Part I: Momentum Dependence of Tunneling Conductance

Basic features of momentum distribution:;

e Broad momentum distribution, implying
localized electrons

e Typically two broad peaks, the separation
between which widens with increasing parti-
cle number N

e Last Coulomb blockade peak has single
peak in momentum distribution




Non-interacting Electrons, T = 0, Box with Hard Wall

As large N, [M(k)|? becomes peaked at ky = Np /L with width dk = 2p /L.
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Screened Coulomb Interaction Potential

The Coulomb interaction in the short upper wire is assumed to have a short-range cuto
due to the nite width of the wire and long-range cuto due to screening by the more
conducting lower wire.
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Formation of Quasi-Wigner Crystal Order with Lowering Density

Instead of the Friedel oscillation of frequency 2K, clear oscillations of frequency 4kg show
sity-correlation, at low density. Here density-density

up, both in density and in density- delg
correlation function is de ned as
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Ground State Tunneling: Exact-Diagonalization

IM(K)|? is insensitive to interactions. Following plot show [M(k)|? for tunneling from N = 3
to N = 4 state.
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Spinless/Polarized Electrons

Under the experimental parameters, spinless electrons are essentially non-interacting for
both high and low density.
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Large-N limit: Ground State Tunneling

For large but nite N and not too close to wall, Luttinger liquid theory gives an estimate
of the ground state quasi-wavefunction as de ned before:
h i1
1 ) pX 5(aeng—a)
YN (X) ~ sin - sin(kex
ef‘f( ) \/LNia L ( F )7
where tunneling exponent for bulk and end is given by Luttinger liquid interaction parameter
gasa=(g+g'—2)/4 and aeng = (g7 —1)/2, respectively. A normalization factor Ny

is used so that the integrated areas under the three curves are the same.
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Estimates of E ective Heisenberg Exchange Constant J

At strong interaction, the dynamics of system can be described by Heisenberg model. The
Heisenberg exchange parameter J can be extracted from gap D between ground state and
rst excited state. For N =2 J =D and for N =4 J =1.5178D.
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Tunneling Conductance at Finite Temperature

Total Conductance G =C(#A(k, )+ %(k_)), where

BK) = [(Ylcws| Yy ) PWag ,
ags
Wag = e—b[Eg'l—m(N—l)]f(eag)
= e PEMI[1 f(eqy)],
k. =4k +eBd/h.
eag =Ey —Ep

pe’
C=—I°bnL
2h N —I—G_meN_l ’

e—me




Finite Temperature and Mixing Spins: Exact Diagonalization

For strong repulsive interaction, spin excitation energy scale D = J/N may become very
small. Three energies scales are important: spin gap D, Zeeman energy E; and thermal
energy kgT. Following picture shows tunneling from N =1 to N = 2: the case of sin-
glet ground state (Ez < D), triplet ground state (Ez > D) and high temperature mixed

state(Ez,D < kgT < De¢harge)-

| singlet |
triplet -
2/5 singlet + 3/5 triplet = = =

Bk)




Finite Temperature and Mixing Spins: Free Spin Regime and Large N limit

If J < kgT < hv¢kg, spin con gurations have equal thermal weight but there’s no charge
excitation, we nd a spectral weight as following:
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Here u zg 2gIn(L/a) is the root-mean-square uctuation of electron position. g is the
Luttinger liquid interaction parameter.



Conclusions for Part |

We investigated the momentum dependence of tunneling matrix elements from a in nite
wire into short quantum containing interacting electrons.

e For N < 4 exact diagonalization is carried out, ground state tunneling matrix element
IM(k)|? is computed.

e Large N calculations of tunneling amplitude, both for ground state tunneling and for free
spin regime, are carried out using Luttinger liquid theory.

Other Possible Factors in Accounting for Experimental Observation

e Soft instead of hard wall con nement: more spectral weight at center.
e Partial spin polarization
e Asymmetry of con nement potential



Part Il: Electronic States of Low Density Region

Model geometry for the electronic density distribution r(x) and gate potential Vy(X)
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The Restricted Hartree-Fock Hamiltonian

Assumptions and simpli cations of the Hartree-Fock model:

e Spin restricted to be either aligned or anti-aligned with magnetic eld B
e Two subbands corresponding to di erent transverse modes in the quantum wire

e Electrons in di erent subbands interact only through Hartree terms

R? ﬂzysb(x)
2m*  x?

Hysh(X) = — + (Va(X) + Db)%/sb(x) + mgBS;Ysb(X)

Vi (X)Yso(X) —  dXVEP(X,X)ysn(X)

Z
Vi) = dX'( |Yisty (X)]*)Verr(x —X)

i,s’.b/

VE® = Visb(X)Yisp(X)Verr(x —X').



Magnetic Phases at the Low Density Region

e The emergence of an antiferromagnetic order at the low density region (left)

e The emergence of spin-aligned region at the center of the wire (right)
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Discrete Density Changes in the Spin-aligned Phase

Abrupt density rearrangements occur due to the successive expulsion of a single electron
from the spin-aligned region
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Nature of Electronic States in the Spin-aligned Region

e The wavefunctions near the Fermi level have large weights near the center

e No sign of self-consistent barrier at the ends of spin-aligned region

e Little spectral weight near k = 0 in the momentum-dependent tunneling matrix element
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Unrestricted Hartree-Fock in a Homogeneous system: E ects of Canting in
the Antiferromagnetic Phase

e The correction to the energy per unit cell due to canting is small in the range where
the ground state is antiferromagnetic

e The S, magnetization is small for canted solution at r = 16mm~1, where the system
make a transition to a ferromagnetic ground state
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Conclusions for Part Il

We investigated the density and spin con guration an inhomogeneous quantum wire using
the restricted Hartree-Fock method. We found:

e When lowering its density, the depleted region goes from a non-magnetic state to an
antiferromagnetic state, and nally to a spin-aligned state sandwiched by antiferromag-
netic states

e In the spin-aligned phase, the spin-aligned region undergoes abrupt density changes by
successively losing a single electron

e The wavefunctions near the Fermi surface are relatively localized near the center, but
they are not Coulomb-blockade states con ned by barrier potentials

e Additional mechanisms, such as impurity potentials or multiple spin state contributions,
are needed to explain the observed large spectral weigh near k = 0 in the momentum
dependent tunneling

e In our model, the e ects due to the canting of the spins in the unrestricted Hartree-Fock
model are small



