


# Fidelity susceptibility, quantum phase transitions, and quantum adiabatic condition

### Speaker: Shi-Jian Gu

The Department of Physics and, Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, China





## **Collaborators:**

Hai-Qing Lin (CUHK) Li-Gang Wang (CUHK, ZJU)

Wen-Long You (CUHK) Ying-Wei Li (CUHK) Ho-Man Kwok (CUHK) Chun-Sing Ho(CUHK) Wen-Long Lu(CUHK) Ching Yee Leung (CUHK) Shu Chen(IoP) Chang-Pu Sun (ITP) Xiaoguang Wang(ZJU) Yuguang Chen(Tongji U.) Chang-Qing Wu (Fudan U.) Wen-Qiang Ning (Fudan U.) Shuo Yang (ITP)

Jian Ma (ZJU)

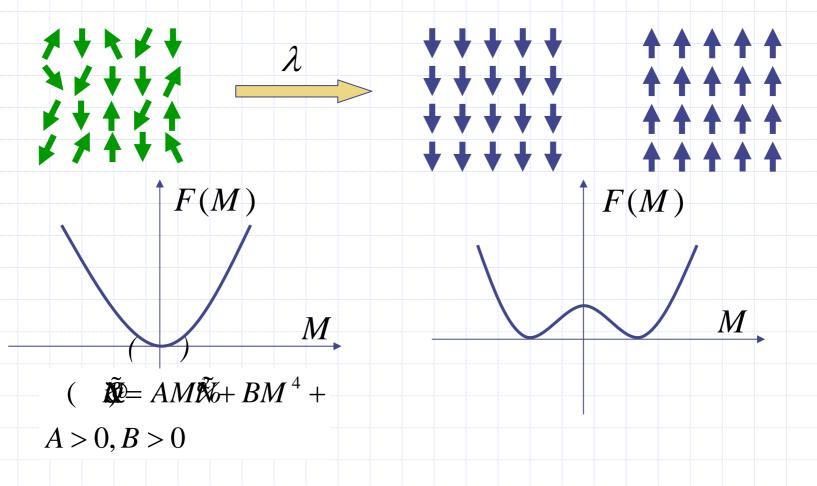
**Introductory review article:** Fidelity approach to quantum phase transitions **Shi-Jian Gu**, arXiv:0811.3127

# Content

- I. Introduction: quantum phase transition, fidelity in quantum information
- II. Fidelity susceptibility, scaling, and universality class in quantum phase transitions
- III. Fidelity susceptibility and quantum adiabatic theorem
- IV. Summary

## **Introduction: QPT**

Thermal phase transitions: which is described by non-analytic behaviors of the thermal properties at the transition points, driven by thermal fluctuation.




Quantum phase transitions: driven by the quantum fluctuations and are described by the non-analytic behaviors of the groundstate properties at the transition points.

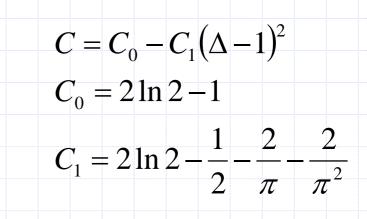
- <sup>3</sup> Mott-insulator transition in Hubbard model.
- <sup>3</sup> Doped High-Tc superconductor
  - **ITP, Department of Physics, CUHK**

### **Introduction: traditional method**

Landau's symmetry-breaking theory






#### **Introduction:** quantum information



A practic quantum computer seems still a dream, but the development in quantum information science has shed new lights on other related fields.



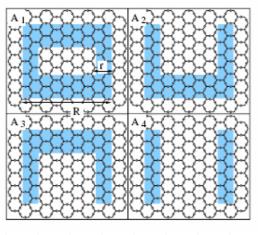
## **Introduction: QPT & quantum entanglement**

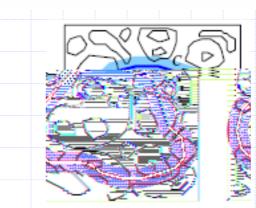




9

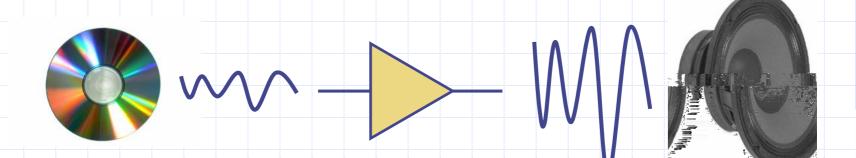
### **Introduction: QPT & quantum entanglement**


#### Detecting Topological Order in a Ground State Wave Function


ction Kitaev&Preskill

Michael Levin and Xiao-Gang Wen

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 25 October 2005; published 24 March 2006)


A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data  $(N, d_i, F_{lmn}^{ijk}, \delta_{ijk})$ . We describe a task know by look objects order large look objects of the ground state wave topological involves computing a quantity called the "topological entropy" which directly measures the total involves computed state of  $D^{-1} = \frac{D}{2m} a_i^2$ .



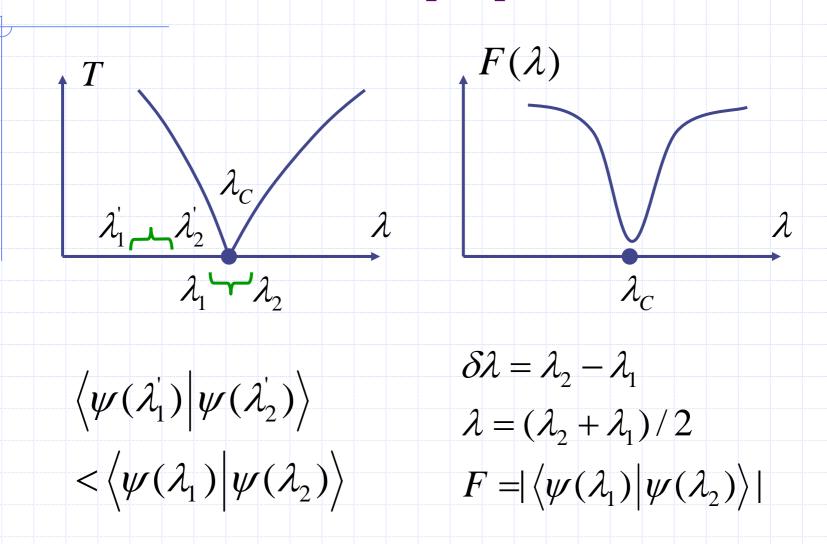


$$S(\rho) = \alpha L - \gamma + \gamma$$

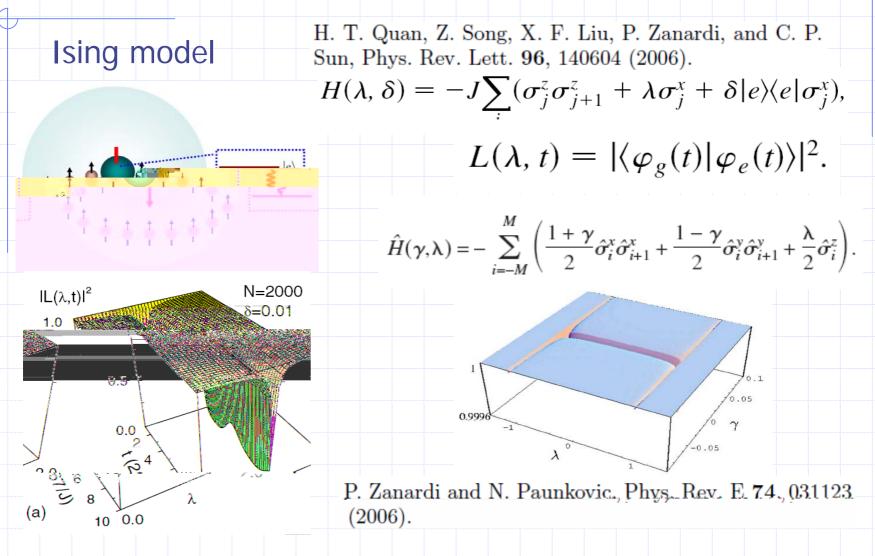
### **Introduction: classical fidelity**



#### Definition

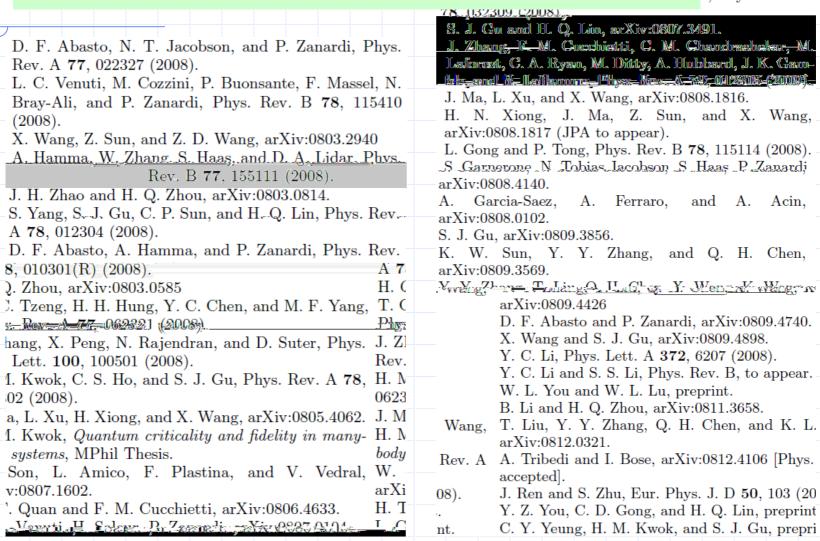

$$\rho = p_1 |1\rangle \langle 1| + p_2 |2\rangle \langle 2| + \dots + p_N |N\rangle \langle N|$$

$$\sigma = q_1 |1\rangle\langle 1| + q_2 |2\rangle\langle 2| + \dots + q_N |N\rangle\langle N|$$


$$F = \sum_{i} \sqrt{p_i q_i}$$



#### **Introduction: information perspective**




## **Introduction: QPT & Fidelity**



#### 100 works have been finished

|                                                       | e a a a a a a a a a a a                                                             |
|-------------------------------------------------------|-------------------------------------------------------------------------------------|
| H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. | S. Chen, L. Wang, S. J. Gu, and Y. Wang, Phys. Rev.                                 |
| Sun, Phys. Rev. Lett. 96, 140604 (2006).              | E 76 061108 (2007)                                                                  |
| P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123  | S. J. Gu, H. M. Kwok, W. Q. Ning, and H. Q. Lin, Phys.                              |
| (2006).                                               | Rev. B 77, 245109 (2008).                                                           |
| H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A: Math. | A. Tribedi and I. Bose, Phys. Rev. A 77, 032307 (2008).                             |
| Theor. <b>41</b> 412001 (2008).                       | P. Zanardi, L. C. Venuti, and P. Giorda, Phys. Rev. A                               |
| P. Zanardi, M. Cozzini, and P. Giorda, J. Stat. Mech. | <b>76</b> , 062318 (2007).                                                          |
| <b>2</b> , L02002 (2007).                             | RY (2007), M. F. Yang, Phys. Rev. B 76, 180403 (                                    |
| M Corrini D Cionda and D Zanandi Dhua Day D           | ev. A 77, 012311 Y. C. Tzeng and M. F. Yang, Phys. Re                               |
|                                                       | (2008).                                                                             |
|                                                       | . Q. Wu, and H. W. Q. Ning, S. J. Gu, Y. G. Chen, C                                 |
|                                                       | 235236 (2008). Q. Lin, J. Phys.: Condens. Matter 20,                                |
|                                                       | <u>Magneira, V_K. K. Haundwič, P. R. Sacramenta</u>                                 |
|                                                       | Rev. A 77, 052302 Viciora, avail V. K. Dugacev, Physics                             |
|                                                       |                                                                                     |
|                                                       | -Rev-R 77-011129 N. Panouković and V. R. Viciua, Phys                               |
|                                                       | A DUNEY A DIA BAR STAND AND AND AND AND AND AND AND AND AND                         |
|                                                       | melil_Q=Lim_Pings_H_M_Kwok_W_Q=Nimg=S=_Cru, a                                       |
|                                                       | Rev. E 78, 032103 (2008).                                                           |
|                                                       | Rev. L 78, 052105 (2008).<br>Phy. Rev. Lett. 100 H. O. Zhou, R. Orus, and C. Vidal. |
|                                                       | 080601 (2008).                                                                      |
|                                                       |                                                                                     |
|                                                       | and B. Li, arXiv: H. Q. Zhou, J. H. Zhao, H. L. Wang, a                             |
|                                                       | 0711.4651.                                                                          |
|                                                       | 1 (2008). J. O. Fjærestad, J. Stat. Mech. P0701                                     |
|                                                       | ng, Phys. Rev. A. S. Chen, L. Wang, Y. Hao, and Y. Wa                               |
|                                                       | 77, 032111 (2008).                                                                  |
|                                                       |                                                                                     |

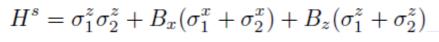


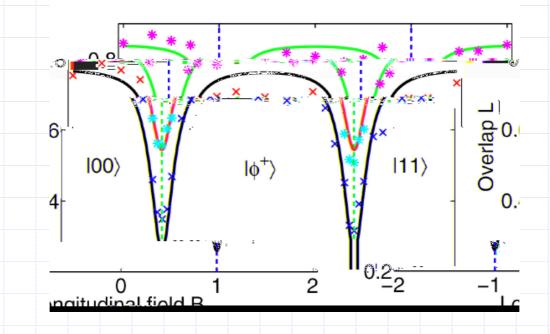
# 100 works have been finished

#### **ITP, Department of Physics, CUHK**

arXiv:0809.4068. li, Phys. Rev. A




#### 100 works have been finished

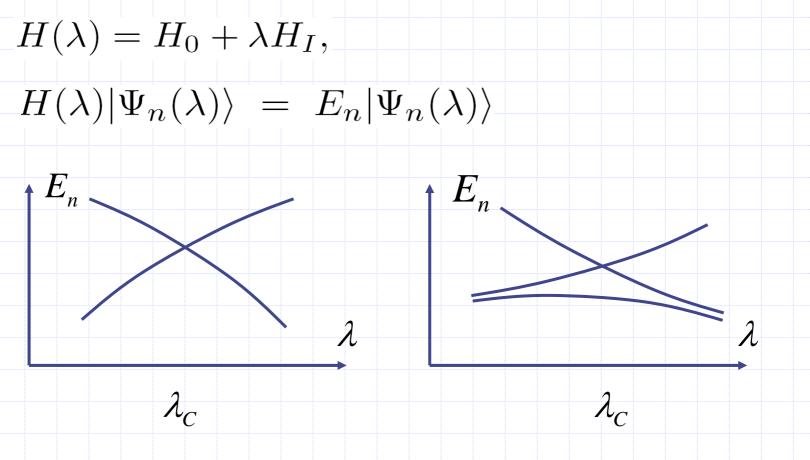

| <ul> <li>L. C. Wang, X. L. Huang, X. X. Yi, Phys. Lett. A 368, 362 (2007).</li> <li>J. L. Li and B. S. Dl. or ys. rev. 74 - 69, 532 (1992).</li> <li>J. X. X. Yi, H. Wang, and W. Wang, Euro. Phys. J. D 4 355 (2007).</li> <li>J. Z. G. Yuan, Pazhgranand, S. Sali, <u>Phys. Rev. A</u>, 7 042118 (2007).</li> <li>C. Cormick and J. Pablo Paz, Phys. Rev. A 77, 022317 (2008).</li> <li>D. Rossini, P. Facchi, R. Fazio, G. Florio, D. A. Lidar, S. Pascazio, F. Plastina, and P. Zanardi, Phys. Rev. A</li> </ul> |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>77, 052112 (2008).</li> <li>C. Wang, Liu, and B. Li, Ph. 056218(2008).</li> <li>Phys. C. Y. Lai, J. T. Hung, C. Y. Mou, and Rev. B 77, 205419 (2008).</li> </ul>                                                                                                                                                                                                                                                                                                                                            |  |
| n<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

## **Introduction: QPT & Fidelity**

Nuclear-magnetic-resonance(NMR) experiments

J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Lett. 100, 100501 (2008).






J. Zhang, etal, Phys. Rev. A 79, 012305 (2009)



## **Spectra reconstruction**

How does a QPT happen for a general quantum system



**ITP, Department of Physics, CUHK** 



### **Perturbation method in quantum mechanics**

You, Li, and Gu, PRE, 76, 022101 (2007)

Fidelity susceptibility  

$$\begin{aligned}
\Psi_{0}(\lambda) = \Psi_{0}(\lambda) = \Psi_{0}(\lambda) + E_{0}(\lambda) + E_{$$



## **Perturbation method in quantum mechanics**

Fidelity susceptibility: what is the physics

$$\chi_F(\omega) = \sum_{n \neq 0} \frac{|\langle \Psi_n | H_I | \Psi_0 \rangle|^2}{[E_n - E_0]^2 + \omega^2}$$

You, Li, and Gu, PRE, 76, 022101 (2007)

0

$$\chi_F = \int \tau \left[ \langle \Psi_0 | H_I(\tau) H_I(0) | \Psi_0 \rangle - \langle \Psi_0 | H_I | \Psi_0 \rangle^2 \right] d\tau$$

Fidelity susceptibility <==> dynamic structure factor

$$[H_0, H_I] = 0 \qquad \longrightarrow \qquad \chi_F = 0$$



### **Extension to thermal phase transitions**

#### Fidelity susceptibility: extension to TPT

P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun, Phys. Rev. A 75, 032109 (2007).

$$F_i(\beta,\delta) = \frac{Z(\beta)}{\sqrt{Z(\beta - \delta\beta/2)Z(\beta + \delta\beta/2)}},$$

You, Li, and Gu, PRE, 76, 022101 (2007)

$$\frac{1}{\delta_{\beta \to 0}} = \frac{-2 \ln F_i}{4\beta^2} \sum_{\chi F} \frac{C_v}{\delta\beta^2} \int_{\delta} C_v = \beta^2 (\langle E^2 \rangle - \langle E \rangle^2)$$
$$\chi_F = \frac{-2 \ln F_i}{\delta h^2} \int_{\delta h \to 0} \frac{\beta \chi}{4} \qquad \chi = \beta (\langle M^2 \rangle - \langle M \rangle^2)$$

A neat connection between quantum information theoretic concepts and thermodynamic quantities

| Google | ● 所有网页 ◎ 中文网页 ◎ 简体中文网页                         |   |
|--------|------------------------------------------------|---|
|        | 约至 775 语符合智慧操作语言可的制造品的意义往用非当时最高级条件表示差常早后-如气 後後 | 1 |

#### 小提示: 只搜索中文(简体)查询结果,可在使用偏好指定搜索语言

#### Shi-Jian Gu's Homepage

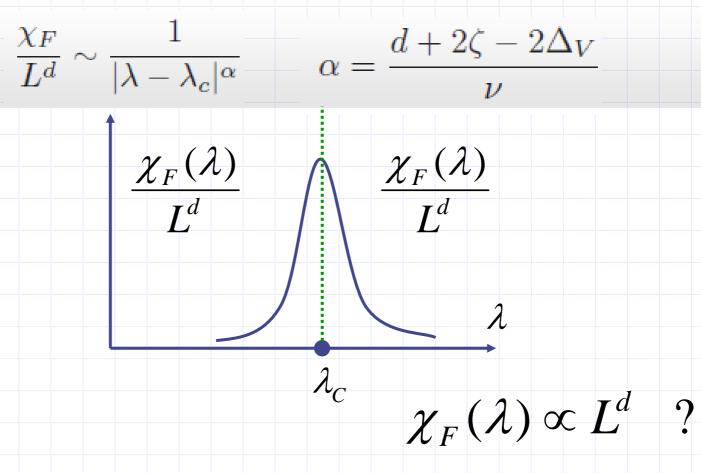
Quantum criticality of the Lipkin-Meshkov-Glick Model in terms of fidelity susceptibility. Ho-Man Kwok, Wen-Qiang Ning, Shi-Jian Gu, and Hai-Qing Lin, Phys. ... www.phy.cuhk.edu.hk/people/teach/sjgu/publication.htm - 40k - 网页快照 - 类似网页

#### Sciencepaper Online - [翻译此页]

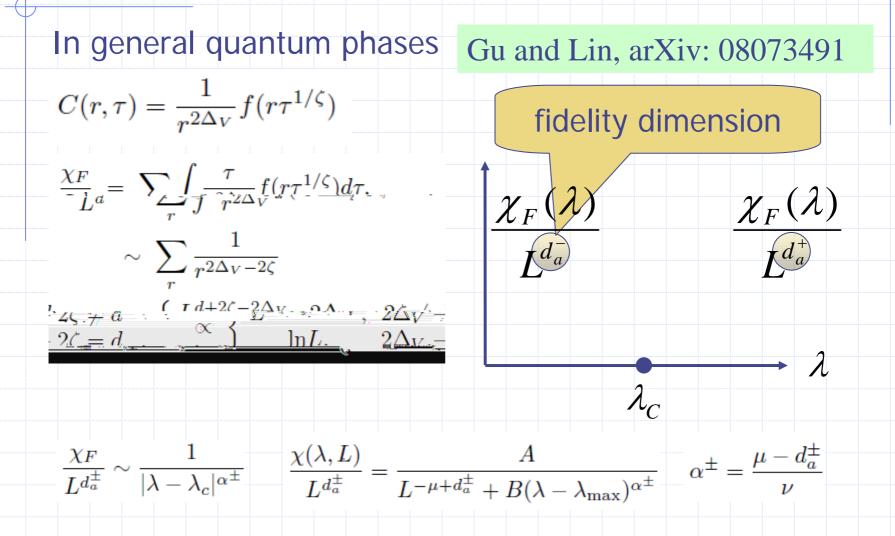
We analyze the critical properties of Lipkin-Meshcov-Glick model in terms of fidelity susceptibility through -body reduced density matrix which we regard as ... www.paper.edu.cn/en/paper.php?serial\_number=200901-405 - 21k - 网页快照 - 类似网页

APS - 2009 APS March Meeting - Event - <u>Fidelity susceptibility</u> and <u>...</u> - [翻译此页] In this talk, I will introduce the quantum fidelity approach to quantum phase transitions based on its leading term, i.e. the fidelity susceptibility. ... meetings.aps.org/Meeting/MAR09/Event/97293 - 类似网页




### **Universality class described by the FS**

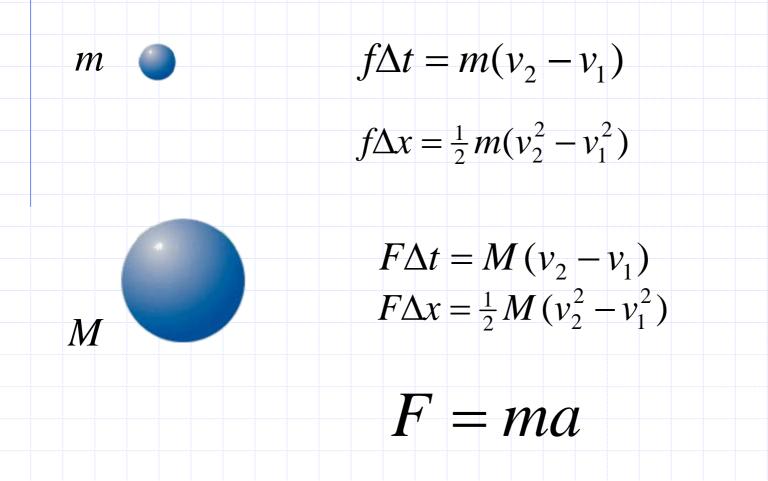
$$\begin{split} H_{I} &= \sum_{r} V(r) & \text{L. C. Venuti and P. Zanardi, Phys. Rev. Lett. 99}, \\ \chi_{F} &= \int \tau \left[ \langle \Psi_{0} | H_{I}(\tau) H_{I}(0) | \Psi_{0} \rangle - \langle \Psi_{0} | H_{I} | \Psi_{0} \rangle^{2} \right] d\tau \\ r' &= s r, \quad \tau' = s^{\zeta} \tau, \quad V(r') = s^{-\Delta_{V}} V(r) \\ \frac{\chi_{F}}{L^{d}} \sim L^{d+2\zeta-2\Delta_{V}} & \mu = 2d + 2\zeta - 2\Delta_{V} & \chi_{F} \approx L^{\mu} \\ &\text{S. J. Gu, H. M. Kwok, W. Q. Ning, and H. Q. Lin, Phys. Rev. B 77, 245109 (2008). arXiv:0706.2495} \\ \frac{\chi_{F}}{L^{d}} \sim \frac{1}{|\lambda - \lambda_{c}|^{\alpha}} & \alpha = \frac{\mu - d}{V} \end{split}$$




## **Dimension of fidelity susceptibility**

The fidelity susceptibility




### **Quantum adiabatic dimension**

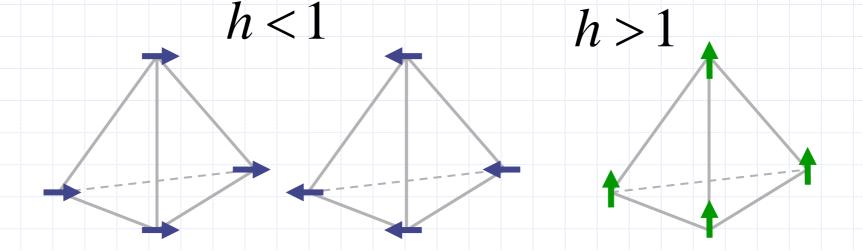


**ITP, Department of Physics, CUHK** 



## **Quantum and classical distance (unpublished)**

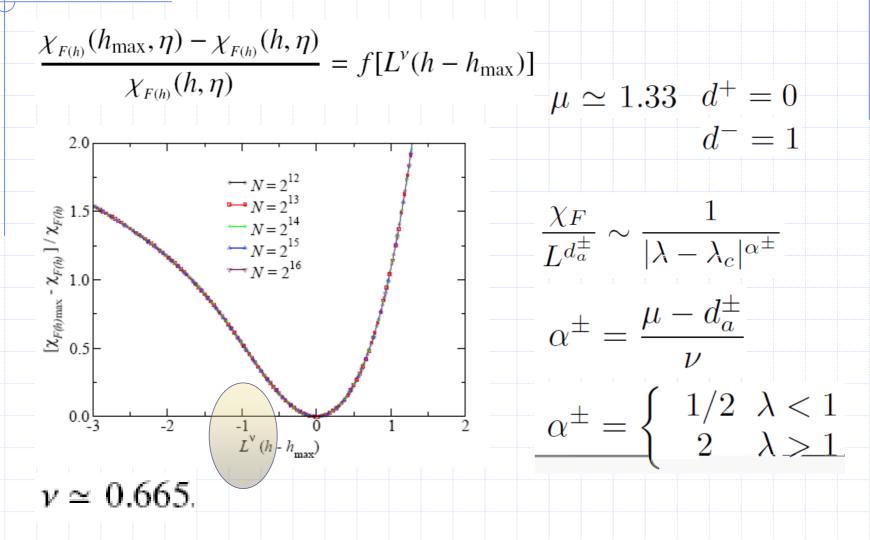





## **Application: the Lipkin-Meshkov-Glick model**

Hamiltonian (N spins)

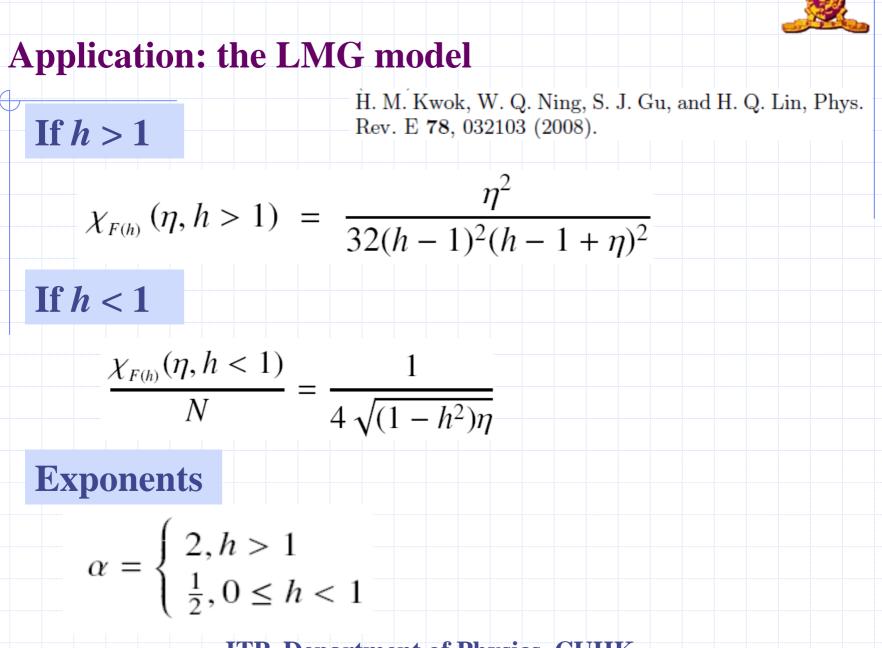
$$H = -\frac{\lambda}{N} \sum_{i < i} \left( \sigma_x^i \sigma_x^j + \gamma \sigma_y^i \sigma_y^j \right) - h \sum_i \sigma_z^i,$$

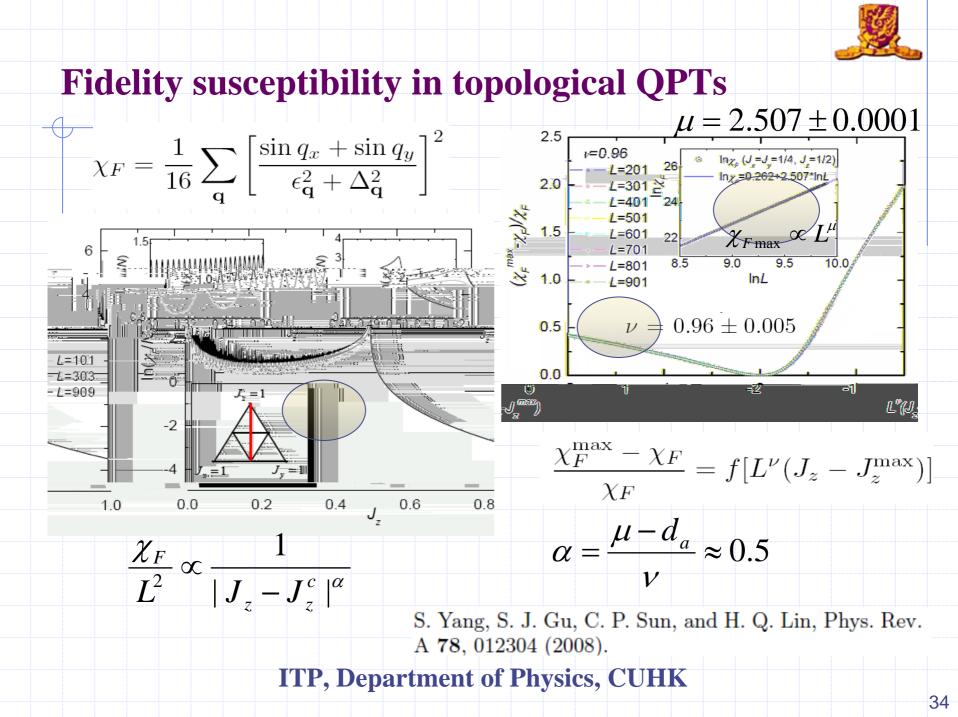

**Ground phases (ferromagnetic, 4-spin sample)** 



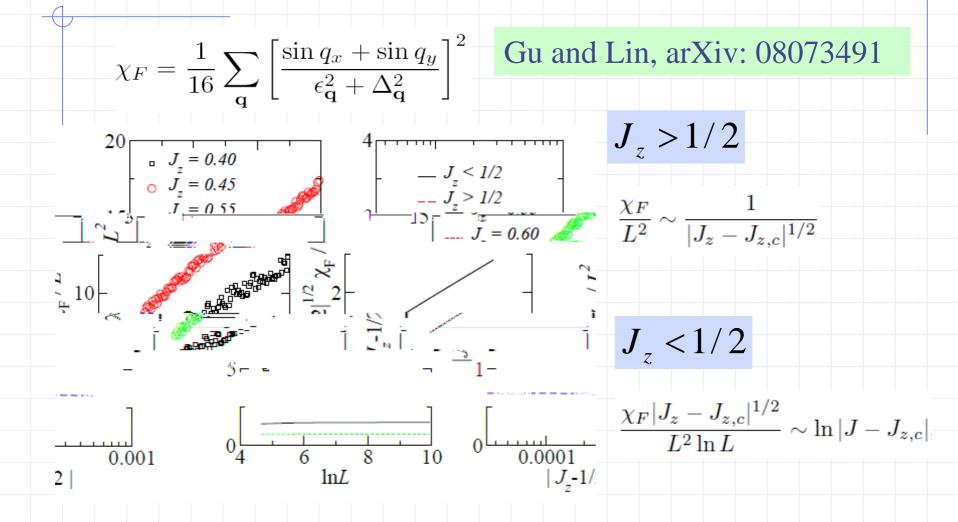
## **Application: the LMG model**



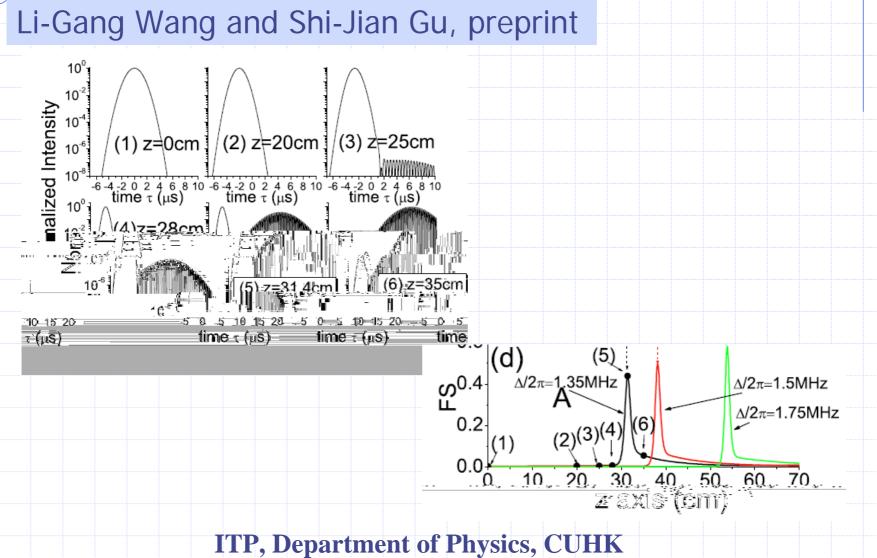

## **Application: the LMG model**




**ITP, Department of Physics, CUHK** 


## **Application: the LMG model**

I. I. Latorre, R. Orús, E. Rico, and J. Vidal, Phys. Rev. If *h* > 1 A 71, 064101 (2005).  $S_{z} = S - a^{\dagger}a,$  $S_{\pm} = (2S - a^{\dagger}a)^{1/2}a$ The Hamiltonian in terms of bosons  $H = -hN + [2(h-1) + \eta]a^{\dagger}a - \frac{\eta}{2}(a^{\dagger 2} + a^2)$  $a^{\dagger} = \cosh(\Theta/2)b^{\dagger} + \sinh(\Theta/2)b,$  $a_{s} = \sinh(\Theta/2)b^{\dagger} + \cosh(\Theta/2)b_{s}$ The diagonalized form  $H = -h(N+1) + 2\sqrt{(h-1)(h-1+\eta)} \left( b^{\dagger}b + \frac{1}{2} \right)$ **ITP, Department of Physics, CUHK** 






## **Fidelity susceptibility in topological QPTs**

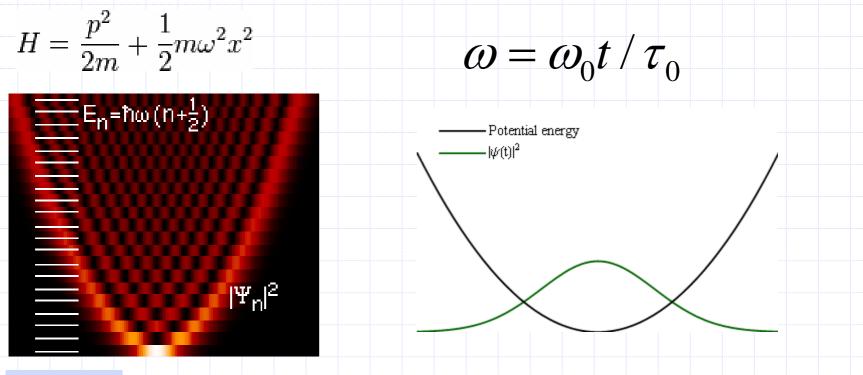


## **Fidelity susceptibility of pulse in dispersive media**





# Content


I.

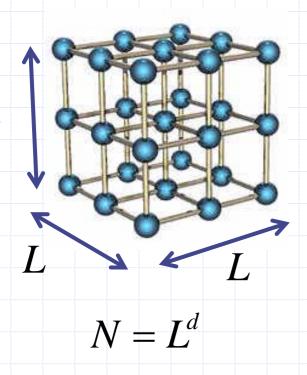
- Introduction: quantum phase transition, fidelity in quantum information
- II. Fidelity susceptibility, scaling, and universality class in quantum phase transitions
- III. Fidelity susceptibility and quantum adiabatic theorem
- IV. Summary

Shi-Jian Gu, arXiv:0902.4623

### **Quantum adiabatic theorem**

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.




Ref: Wiki

**ITP, Department of Physics, CUHK** 



#### A thermodynamic quantum many-body system

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it **Slowly enough** and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.



#### Thermodynamic limit





## **Quantum adiabatic condition**

Time-dependent Hamiltonian

$$H(t) = H_0 + H_I(t)$$
$$H(t)|\phi_n(t)\rangle = \epsilon_n(t)|\phi_n(t)$$

Quantum state and Schodinger Eq.

$$\begin{split} |\Psi(t)\rangle &= \sum_{n} a_{n}(t) |\phi_{n}(t)\rangle \qquad i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle \\ i\hbar \sum_{n} \left[ \dot{a}_{n}(t) |\phi_{n}(t)\rangle + a_{n}(t) |\partial_{t}\phi_{n}(t)\rangle \right] &= \sum_{n} a_{n}(t)\epsilon_{n} |\phi_{n}(t)\rangle \end{split}$$



### Hamiltonian

### Unitary transformation

$$a_{n}(t) = \tilde{a}_{n}(t) \exp\left(-i\int^{t} \epsilon_{n}t'dt'\right)$$
$$\frac{\partial \tilde{a}_{m}}{\partial t} = -\tilde{a}_{m}\langle \phi_{m}|\partial_{t}\phi_{m}\rangle$$
$$-\sum_{n\neq m}\frac{\langle \phi_{m}|\partial_{t}H|\phi_{n}\rangle\tilde{a}_{n}}{\omega_{nm}} \exp\left(-i\int^{t} \omega_{nm}dt'\right)$$



 $\mathcal{T}_0$ 

#### Hamiltonian

Time-dependent Hamiltonian

$$H(\lambda) = H_0 + \lambda H_I \qquad \lambda = \lambda(x)$$
$$x = t/\tau_0$$

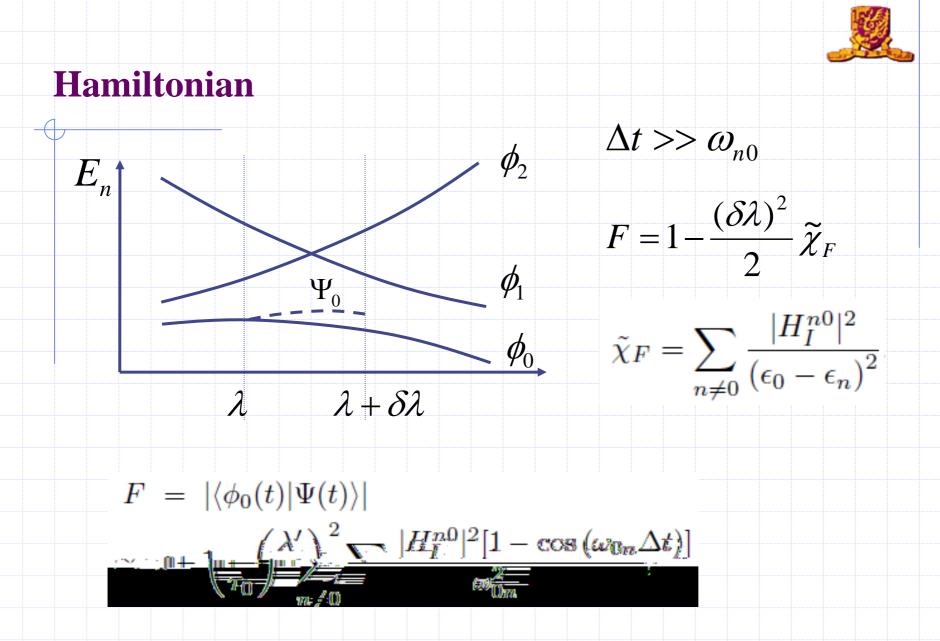
<sub>0</sub> is the duration time, for instance

# $\lambda \in [0,1] \implies t \in [0,\tau_0]$



#### Hamiltonian

Time-dependent perturbation theory


$$\lambda \rightarrow \lambda + \delta \lambda$$
 from  $t \rightarrow t + \Delta t$ 

From initial conditions  $\tilde{a}_0 = 1, \tilde{a}_m = 0$ 

$$\tilde{a}_{0} \simeq 1 - \frac{\Delta t}{\tau_{0}} \lambda' \langle \phi_{0} | \partial_{\lambda} \phi_{0} \rangle$$

$$\underline{t - \tilde{a}_{m}(\Delta t)} = - \int_{-\frac{1}{\tau_{0}}}^{\Delta t} \frac{\langle \phi_{m}^{\perp} \partial_{t} H | \phi_{0} \rangle}{\int_{0}} \underline{e^{-\frac{i}{\hbar} \int_{-\frac{1}{\tau_{0}}}^{t} |\epsilon_{0} - \epsilon_{m}| dt'} d}$$

$$= -\frac{1}{\tau_{0}} \frac{d\lambda}{dx} \frac{\langle \phi_{m} | \partial_{\lambda} H | \phi_{0} \rangle}{\epsilon_{0} - \epsilon_{m}} \left[ e^{-i[\epsilon_{0} - \epsilon_{m}]\Delta t} - 1 \right]$$





#### Hamiltonian

The probability of staying in the ground state:

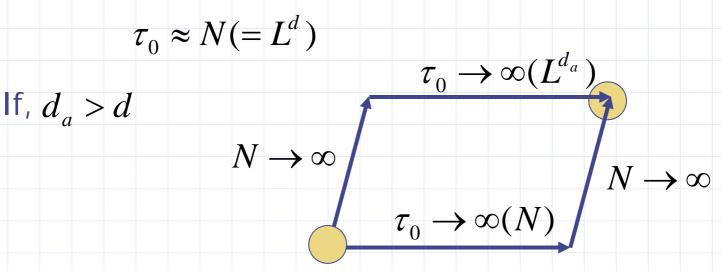
$$P \simeq \left[1 - \frac{1}{2} \left(\frac{\lambda'}{\tau_0}\right)^2 \tilde{\chi}_F\right]^{L^{d_a}}$$

The quantum adiabatic condition

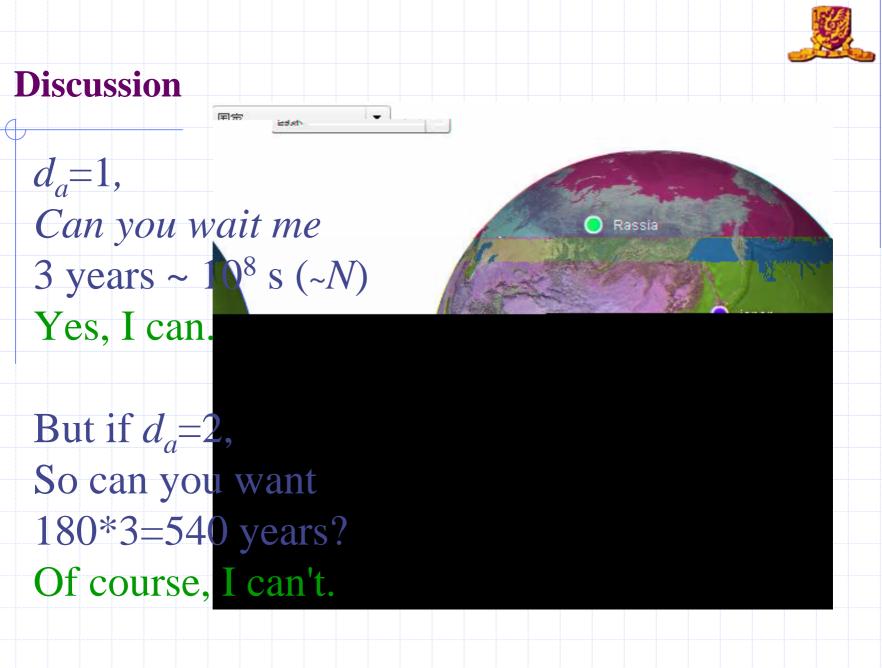
$$|\lambda'|L^{d_a} \ll \tau_0$$

For linear quench

$$L^{d_a} \ll \tau_{\Delta}$$




#### Discussion


The quantum adiabatic condition

$$|\lambda'| L^{d_a} \ll \tau_0$$
  $N(=L^3) = 6.02 \times 10^{23}$ 

A physical acceptable duration time



Then the quantum adiabatic theorem breaks down





#### Summary

- 1. We establish a general relation between the fidelity and dynamic structure factor of the driving parameter
- 2. We can learn the universality class of the critical phenomena from the fidelity susceptibility.
- 3. We derive a quantum adiabatic condition for quantum many-body systems in the thermodynamic limit.

