Important aspects related to the pairing mechanism of iron-based superconductors revealed by ARPES

丁洪 中科

Angle-Resolved Photoemission Sp the electrons are defined in mo transition of the electrons are defined in mo transition of the basic Energy Sciences Workshop on Superconductivity.

• Angle-Resolved Photoemission Spectroscopy (ARPES). Wavelike quantum states of the electrons are defined in momentum space (k-space). ARPES allows direct

Emerging Experimental Techniques and Opportunities

Photon Sources

Laboratory source

Synchrotron source

rare gas discharge lamps
x-ray tubes
10¹⁴ photons/second

2 9 4

Ultrahigh-resolution ARPES system

The new iron-based high- T_c (up to 56K) superconductors

LaFeAs O_{1-x}F_x (T_c = 26K) H. Hosono, Japan Feb. 23, 2008

SmFeAs $O_{1-x}F_x(T_c = 43K)$ X.H. Chen 2 8

Phase diagram of "122" compounds

electron doped

Optimally hole doped samples

Calculated band structure and Fermi surface

A complete picture of band structure and FS

H. Ding *et al*. arXiv

 $2\Delta/T_c \sim 7$

 $2\Delta/T_c \sim 3.6$

$$2\Delta/T_c \sim 7$$

Momentum dependence of the superconducting gap

Fermi surface dependent but isotropic pairing

H. Ding et al., EPL 83, 47001 (2008)

In optimally hole doped samples, good FS nesting between the inner (α) hole pocket and the electron pockets

Strong pairing also happens to these FSs!

 $2\Delta/k_BT_c = 7.7, 3.6, 7.7, and 7.2$ for α , β , γ , and δ

Optimally electron doped samples

Band structure and FS in BaFe_{1.85}Co_{0.15}As₂

Temperature dependence of the SC gaps

$$2\Delta_{\beta}/k_{B}T_{c} = 6$$

$$2\Delta_{\delta}/k_{B}T_{c} = 4.5$$

Momentum dependence of the SC gaps

In optimally electron doped samples, good FS nesting between the outer (β) hole pocket and the electron pockets

Strong pairing also happens to these FSs!

$$2\Delta/k_{B}T_{c} = 6, 4.5$$

for $\beta, \gamma(\delta)$

K. Terashima et al., arXiv: 0812.3704

FS nesting induced strong pairing

Collapse of T_c in heavily hole doped samples

Band Structure and Fermi Surface of KFe₂As₂

Wave Vector

Doping evolution of Fermi surfaces of Ba_{1-x}K_xFe₂As₂

T. Sato *et al.*, arXiv: 0810.3047

Disappearance of electron FS pockets $\leftarrow \rightarrow$ collapse of T_c

Interband scattering via Q_{AF}

Disappearance of T_c in heavily electron doped samples

Doping evolution of Fermi surfaces of BaFe_{2-x}Co_xAs₂

Disappearance of hole FS pockets \iff collapse of T_c

Vanish of interpocket $Q_{AF} \iff$ collapse of T_c

Observation of a dispersion kink in the superconducting state

P. Richard et al., arXiv: 0808.1809, PRL accepted

A low-energy kink observed in the α band

Consistent with antiphase *s*-wave (or *s*[±])

M.M. Korshunov and I. Eremin, cond-mat/0804.1793

Conclusions

Inter-pocket (π, π) interactions, with spin nature, play an important role in paring

Fermi surface nesting enhances pairing

欢迎北大学生来读研究生!

http://ex7.iphy.ac.cn