北京大学量子材料科学中心

International Center for Quantum Materials, PKU

Weekly Seminar

Exploring novel ferromagnetic and superconducting orders via proximity effect in material heterostructures

Peng Wei University of California, Riverside

Abstract

Proximity effect in multilayer heterostructures allows the creation of electronic excitations or quasiparticles with mixed physical characters that is usually impossible to be obtained in a single material. For example, it allows quasiparticles with combined characters of superconductivity, ferromagnetism, and spin-orbit coupling etc. As a result, unconventional electronic excitations can be built. In particular, inducing superconductivity into well-defined metallic surface band with giant spin-obit coupling and Zeeman splitting have been shown as candidate for Majorana fermion [1]. In this talk, I will first present our most recent results in building novel ferromagnetic ground states of Dirac electrons in graphene [3], as well as inducing ferromagnetic order in topological insulators (TI) [2]. They further exemplify a precise and clean approach in modulating the spins of two-dimensional materials using the local exchange magnetic field. These experiments are done in heterostructures of graphene/EuS or TI/EuS with EuS a typical ferromagnetic insulator. Secondly, I will present our device based heterostructure platform for creating and detecting Majorana fermions using the nanowires of epitaxial gold heterostructure. By means of electron tunneling spectroscopy, I will demonstrate the unconventional superconductivity induced in the two-dimensional surface states of gold [4], in one dimensional gold **admonstrate** the unconventional superconductivity induced in the Majorana fermion.

References:

[1.] Potter, A. C. and Lee, P. A., Topological superconductivity and Majorana fermions in metallic surface states, *Phys. Rev. B* 85, 094516 (2012)

[2.] Wei, P., Katmis, F., Assaf, B. A., Steinberg, H., Jarillo-Herrero, P., Heiman, D. & Moodera, J. S., Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators, *Phys Rev Lett*