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By 3D particle-in-cell simulation and analysis, we propose a plasma lens to make high intensity, high

contrast laser pulses with a steep front. When an intense, short Gaussian laser pulse of circular

polarization propagates in near-critical plasma, it drives strong currents of relativistic electrons which

magnetize the plasma. Three pulse shaping effects are synchronously observed when the laser passes

through the plasma lens. The laser intensity is increased by more than 1 order of magnitude while the

initial Gaussian profile undergoes self-modulation longitudinally and develops a steep front. Meanwhile, a

nonrelativistic prepulse can be absorbed by the overcritical plasma lens, which can improve the laser

contrast without affecting laser shaping of the main pulse. If the plasma skin length is properly chosen and

kept fixed, the plasma lens can be used for varied laser intensity above 1019 W=cm2.
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The recent development of ultrashort-pulse high peak
power laser systems enables us to investigate high field
science under extreme conditions [1], which opened new
and active research fields such as fast ignition of inertial
confinement fusion [2], laboratory astrophysics [3], and
development of a compact source of high-energy electrons
and ions [4].

Generation of high-energy ions by ultraintense laser
pulses has been intensively studied due to its wide range
of applications [5,6]. Radiation pressure acceleration has
been proposed as a promising route to obtain high-quality
ion beams in a much more efficient way [7–13], compared
to the target normal sheath acceleration [14–16]. In order
to accelerate ions to a relativistic velocity in the radiation
pressure acceleration regime, hole-boring effects [10]
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where e,ne, and c is the charge of electron, electron den-
sity, and speed of light in vacuum, respectively. Omitting
the numerical factors, the quasistatic magnetic field at the
distance r from the axis reads:

Bs ¼ ðeneÞ2�r: (1)

For a uniform plasma, the self-generated magnetic field
vanishes at the channel axis and reaches a maximum at the
channel edges. The quasistatic magnetic field pinches the
relativistic electrons into a channel with a radius r



y0 ¼ 10� and x0 ¼ 10�, where T ¼ 3:3 fs is the laser
period. The uniform carbon plasma of density n0 ¼
2:4nc is placed between 3� � z � 60�, where nc is the
critical plasma density. Each cell is filled with 8 quasipar-
ticles. The initial temperature of the electrons and carbon
ions is 5 eV.

The transverse pulse self-focusing process at t ¼ 72 T is
shown in Fig. 1. The incident beam first propagates through
an unstable filamentary stage and then collapses into a
single channel as shown in Fig. 1(a). The laser pulse is
focused to a smallest spot size at z ¼ 24:1 �m, corre-
sponding to a laser self-focusing length of about
21:1 �m. The normalized electric field Ey is 84.59 which

is increased by a factor of 5 and the laser intensity is 25
times higher than the initial one. The (X, Y) section of Ey in

Fig. 1(b) shows that the pulse self-focusing process is
symmetrical. The laser retains its Gaussian radial profile
within the channel with a radius of about 0:9� as seen in
Fig. 1(c), which is in good agreement with Equation. (3)
(theory predicts 0:83�). The coalescence of the filaments
by magnetic interaction are well explained on the basis of
the magnetic interaction by Askaryan et al. [26]. In
Fig. 1(d), the (Z, Y) section of the quasistatic magnetic
field Bx averaged over 2 laser periods is plotted. This field
vanishes at the channel axis and reaches a maximum at the
edges. The maximum magnetic field is about 6.7 at the
edges, which agrees well with the theoretical prediction of
6.29 by Eq. (4).

Figure 2 shows how the pulse profile changes in the
longitudinal direction by laser compression during its
propagation through different plasma planes. It shows an
efficient laser compression at z ¼ 24:1 �m, where the
laser propagates a plasma slab length that is the same as
the self-focusing length. At the same time the laser pulse
developed a steep front of about 8 T. This implies that a
initial Gaussian profile is nearly transformed into a quasi-
step function pulse. For a plasma length longer or shorter

than the self-focusing length, the laser compression is less
efficient.
We now study the optimistic parameters for the plasma

lens. Considering laser shaping of an intense laser pulse,
three typical parameters are critical for the process:
(i) increase of the normalized vector potential on axis f0 ¼
amax=a0; (ii) laser rise time rT ; (iii) laser transmission
efficiency tE. Figure 3(a) shows the influence of plasma
density on these three parameters with a0 ¼ 16:5. The
normalized vector potential on axis can be enhanced by a
factor of 5 for plasma density varied from 1nc to 5nc. We
should note that the laser transmission efficiency tE de-
creases with plasma density increasing, while the laser rise
time rT decreases rapidly to about 8 T at ne ¼ 2:4nc and
becomes saturated. The laser transmission efficiency is about
30% at this point while it can be as high as 60% with plasma
density of ne ¼ 1:5nc if the pulse rise time can be compro-
mised. The quasistatic magnetic field Bs and the channel
radius r observed in simulation are consistent with the
theoretical value from Eqs. (3) and (4) as shown in

Figs. 3(b) and 3(d). For a fixed plasma skin length ls=� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anc=ne

p ¼ 2:6, the enhancement of laser amplitude, laser
rise time, transmission, and the channel radius r are nearly
the same for varied laser intensity ranging from 1019 W=cm2

to 1021 W=cm2 as shown in Figs. 3(c) and 3(d).
This means that the plasma lens works for different laser

intensities when keeping the plasma skin length fixed. As a
result, if we choose a proper plasma density (satisfy ls=��
2:6) and a proper plasma slab length (equal the self-
focusing length), the laser focusing and compressing can
be realized at the same time and same position. This
provides an efficient way to generate a high intensity laser
pulse with a sharp rising front by laser shaping in both the
transverse and longitudinal directions.
The improvement of the laser pulse contrast (the inten-

sity ratio between the main pulse and the prepulse) is
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FIG. 2 (color online). Longitudinal pulse compression:
On-axis envelope profile Ey at z ¼ 0 �m, z ¼ 20 �m, z ¼
24:1 �m, and z ¼ 30 �m.
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FIG. 3 (color online). Pulse shaping for varied plasma density
and laser intensity (a) f0, rT and tE for varied plasma density at
a0 ¼ 16:5; (b) Bs and r for varied plasma density at a0 ¼ 16:5;
(c) f0, rT and tE for varied laser intensity with fixed plasma skin

length ls=� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anc=ne

p ¼ 2:6; (d) Bs and r for varied laser

intensity with fixed plasma skin length ls=� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anc=ne

p ¼ 2:6.
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promising for various applications. Relativistic transpar-
ency provides a way to achieve laser pulse shaping and
generate a high contrast laser pulse [27]. In particle-in-cell
(PIC) stimulations here, we study the prepulse absorbing
process. We set a prepulse of a ¼ 1, �¼10T and r0 ¼ 6�,
which is 40 T before the main pulse as shown in Fig. 4(a). It
is observed that the prepulse can be absorbed in the plasma
without affecting the shaping of the main pulse as shown in
Fig. 4(b). This shows the plasma lens can also improve the
contrast of laser pulse.

In summary we propose a scheme to make a high
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