Email: whw@iphy.ac.cn http://mmp.iphy.ac.cn

1-100 µm

1-100 nm

<1nm

"

500-600 BC

. D. Turnbull, P.W Anderson, Mott

>7

90 (0.06 K/s) 95 (Gol f , A. I noue() WL. Johnson (Cal tech)

Fabrication process for large scale plates

>Zr-, Mg-, Ti-, Fe-, Co-, Nd-, Ce- Pd-, Au-, Pt-,Ln (CuZr) Fe **10 cm** Zr Fe Zr-, Pd-, Ce-BMGs 10

$\sigma \propto k / \sqrt{d}, \sigma$:

d

200 MPa 400 700

MPa BNG 2000 MPa 5500 MPa

Figure 2. Bulk metallic glass magnetic-shielding sheets for laptop PCs.

: , O. 1

Science, 314, 1133(2006)

×

125

21

Science, 267 (1995)1615

P.W. Anderson

,

2 3 Telephone Cains & Cards

Achi I I es

•

A.A.Griffith 1920

"

50

1 --

PRL, 103, 065504(2009)

66 ? ?

Spot Magn

Acc V

Det WD

Free volume model

VFT $\eta = A \exp[B / (T - T_0)]$

 $\rho_E = \frac{1}{2} M \gamma^2$ M-弹性模量, y为-应变

 $\rho_E = \frac{1}{2} M \gamma_0^2 = \frac{1}{2} \frac{\kappa_B I}{\langle \gamma^2 \rangle} \gamma_0^2 \propto \frac{\kappa_B I}{\langle \gamma^2 \rangle}$

 $\rho_E = (1 - \alpha)G + \alpha K$

 $\rho_E = \Delta E / V_{\rm m} = (10G + K) / 11$

PRB 81, 220201 (2011)

I 1 1 $G_{\infty} = \rho k_{B}T + \frac{2\pi\rho^{2}}{15} \int_{0}^{\infty} \frac{d}{dr} \left| r^{4} \frac{dU}{dr} \right| g(r)dr \qquad K_{\infty} = \frac{5}{3}G - \frac{4\pi\rho}{12} \int_{0}^{\infty} \left[r^{3}U'(r) \right] g(r)dr$ $\eta = \eta_0 \exp[\Delta E(T)/k_B T]$. $\Delta E(T) \propto$ 1000 2010

Maxwell

 $\tau_{R} = \eta/G_{\infty} \quad (1776)$

$$\begin{aligned} \eta &= \eta_0 \exp[\Delta E(T)/k_B T] \\ \Delta E(T)/k_B T \Big|_{Tg} &= \mathring{\pi} \bigotimes \\ \frac{\rho_E V_m}{RT_g} &= \frac{(0.91G + 0.09K)V_m}{RT_g} \equiv \text{constant} \\ 46 \\ (0.91G + 0.09K) Vm/RT_g \\ 0.075 \\ G K \approx 10:1, \\ \rho_E &= (10G + K)V_m/11 \end{aligned}$$

Phys. Rev. B 76, 012201 (2007).

 $\frac{\Delta V_S}{V_S} : \frac{\Delta V_L}{V_L} \approx 2:1$

 $\rho_E = (10G + K)/11.$

 $\rho V_{S}^{2} = G$ $\rho V_{L}^{2} - \frac{4}{3} \rho V_{S}^{2} = K$ $\xrightarrow{\frac{\Delta V_{S}}{V_{S}} : \frac{\Delta V_{L}}{V_{L}} \approx 2:1}{V_{S}/V_{L} \approx 0.5, v \approx 0.333} \xrightarrow{\Delta G} : \frac{\Delta K}{K} \approx 5:1$

Adv Mater. 21, 4524 (2009)

2	1	2		3	1	5	6	1	8	9	10	11	12	13	14	15	16	17	18
1	1 氢 H				非金	非金属元素													2 氮He
2	3 锂 Li	4 铍 Be			主族	金属元	^床 素(过渡	金属)						5	6	7	8 20	9 氣 P	10 気 Ma
3	11 钠 Na	12 镁 Mg												16 AL	旺 21	19 I	16 硫 S	17 氯 CI	18 氯 Ar
4	19 钾 K	20 钙 Ca		21 钪 Se	22 钛 Ti	23 钒 V	24 络 Cr	25 話 Lin	26 鉄 Fe	27 结 Co	28 镍 Ni	29 铜 Cu	30 锌 Zn	31 家 Ga	32 播 Ge	33 砷 As	34 硒 Se	35 阗 Br	38 東 Kr
5	37 伽 Rb	38 總 Sr		39 铱 Y	40 結 Zr	41 铌 86	42 相 IIo	43 得 Te	44 钉 Bu	45 铑 Bh	46 紀 Pd	47 根 Ag	48 編 Ca	49 锢 In	50 揭 Sn	51 锦 Sb	52 磅 Te	53 07 I	54 高 Xe
6	55 铯 Cs	56 钡 Ba	*	71 缯 Lu	72 給 Hf	73 钽 Ta	74 钨 T	75 铼 Re	76 锇 Os	77 铱 Ir	78 铂 Pt	79 金 ka	80 汞Hg	81 钜 T1	82 铅 Pb	83 铬 Bi	84 钋 Po	85 较 At	86 氡 Ra
7	87 紡 Fr	88 補 Ra	**	103 領止	104 R£	105 Bb	106 Sg	107 Bh	108 Hs	109 Mt	110 Vun	111 Uuu	112 Uub	115 1041	114 Vuq	11 2 Vup	116 Uuh	Bat	118 Uuo
				57	58	59	60	61	82	63	64	65	65	67	68	69	70		
* 鋼糸元素			*	澜 La	•种 Ce	缯 Pr	較 Nd	钷 Pa	₩ Sa	辅Lu	* Gd	試 Tb	續Dy	钬 Ho	稱 Br	铥To	籠 Tb		
1	** 倒采	元素	**	89 铜 Ac	90 牡Th	91 镤 Pa	92 铀 U	维助	94 7 7u	95 1	96	97	98	99	100	101	102		

 $E \propto T_g$ T_g

 T_{g}

Tg

2

Phys Rev Lett. 94, 205502(2005) 算量 被选为Phys. Rev. Focus 9 June 2005; Nature, Highlight, Vol 435, pp.717, 2005

Parameter	Materials Plastics BMG SPF alloys						
Processing temperature [°C]	160-260°C	160°C (Au-based) 280°C (Pt-based) 350°C (Pd-based) 430°C (Zr-based	900°C (Ti ₆ Al ₄) ¹⁸ 465°C (Al 2004)				
Processing pressure [Pa]	1-10 x 10 ⁵ Pa	1-4 x 10 ⁵ Pa	1-4 x 10 ⁵ Pa				
Maximum strain	~	~10 000%	<400%				
Typical strain rate [s ⁻¹]	10 ⁻¹ -1	10 ⁻¹	10 ⁻³				
m	~1	1	0.4-0.7				
$ms = \frac{d\log(h/G)}{dT_g/T} \bigg _{T=T_g}$	137 ²⁰	52 (Pt-based) ²¹ 70 (Zr-based) ²¹	Not applicable				
κ [W/mK]	0.3	10	170				

~

Stress (MPa)

34.9 µm 14.4 pm ₩D Acc.V Spot Magn 6 8 10.0 kV 4.0 1500x Det WD SE 5.1 50 µm iot Magn Det $50\ \mu m$ SE $1499 \times$ $T_g < T_{pr}$

PRL, 94, 205501 (2005)

"

/

A promising material for microdevices

microforming of Ce glass at 420K

Adv Eng Mat 2010

1

I

Heavy electron

Phys Rev. Lett. 2005, 94, 205501 (2005) Chin
Phys. Lett (2004) 901
PRL Focus

Science 315, 1385(2007)

	0	
$d=A \ \varepsilon \ B$	(%)	sţ
	4.6	
	12	
<i>B</i> =1.45	25.4	
	40	

		7-5
		(a)
ε	Shear band	
(%)	spacing d (µm)	20
4.6	135	ο 100 100 100 100 100 100 100 10
12	38.2	aar band s
25.4	14.5	
40	6.4	
80	2.1	

Science 315, 1385 (2007)

Johnson, Nature, 451, 1085 (2008)

Metallic glasses with large plasticity Open a window for understand the intrinsic mechanism of structural deformation in glass.

ZrCuNiAl

What is the length scale of plastic deformation? NMR: local, short range Neutron: intermediate range TEM: microstructure

Flat shine fracture surface like silicate glasses The brittle BMGs close to ideal brittle fracture BMG exhibits two distinct zones: flat mirror zone and mist zone consisting of massive river patterns

APL 89, 181911 (2006)

Peak to peak and valley to valley

Phys Rev Lett 98, 235501 (2007)

The stripes consist of the hexagonal closedpacking ordered dimples

The transition from dimple to periodic corrugation

a certain dimple density and velocity are required to form a periodic corrugation pattern

APL 89, 121909 (2006)

沙丘上的波纹

In granular system

Nature 436, 1008 (2005) Nature 418, 310 (2002)

Damage cavities assembly model

Similar deformation morphology

 $D(s) \sim s$

Our model considering the interaction of multiple shear bands

The kinetic equation for the system:

$$[k(vt - x_i) + k_c(x_{i+1} + x_{i-1} - 2x_i) - \sigma_f(\dot{x}_i)] \frac{\pi d^2}{4} = M\ddot{x}_i$$

$$\sigma(x) = \sigma_{ys} - E\frac{x_s}{L} = \sigma_{ys} - \frac{E}{L}\frac{\kappa_M}{(\kappa_s + \kappa_M)}x = \sigma_{ys} - \frac{Ex}{L(1+S)}$$
 Shear resistance of material

The calculated stress drop probability distribution can be well fitted by a power law distribution, reproduce the experimental observation

PRL 105 (2010) 035501

Science 319, 1655 (2008)

, C ,

6500 !

Nature454, 192 (2008)

The volatile budget of the lunar mantle can, at present, only be reconstructed from the record preserved in the mare basalts and the lunar volcanic glasses, the most primitive basalts from the Moon.

Northern Wood Frog Rana sylvatica

 the only frog found north of the Arctic circle

 when frozen, the frog's breathing, blood flow and heartbeat stop

(~ %)

loading rate (MPa m^{1/2} s⁻¹)

