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Outline

Introduction (to glasses)

Minimalist topological model

— foams & covalent glasses

— non-interacting Hamiltonian, constrained dynamics
== glassiness, two-time dynamics

Annihilation-diffusion

Lattice analogues
— Different types of absorbing ground states
e Zero degeneracy  high degeneracy

Ultimate distillation?

— Simple strong glass

e characteristic features » mean-field soluble with
activation

Extensions & related models




Glasses

C(t+ t,, t,) 1

 Non-periodic ‘freezing’

— viscosity ~ 10*# poise - T,
e Fast and slow processes
e Aging/ preparation-
dependence

Equm'\reducing T, T-T,
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> log t




Structural glasses
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Structural glasses

Strong: e.qg. silica
covalent, strong directional forces

Fragile e.g.argon
weaker, central (non-directional) forces: Lennard-Jones




Usual models and systems

 |Interacting ‘particles’, simple dynamical
moves

— Spin glasses: quenched disorder

— Structural glasses: no imposed disorder



Fragile glasses/D1RSB

AS|

Fraqgile structural glasses

T ~ Kauzmann temperature
T, ~ Dynamical glass temp.

(viscosity ~ 1013 poise)

T* ~ Response plateau

D1RSB spin glass

Ty ~ Thermodynamic trans"
T, ~ Dynamical transition

T* ~ Correlation plateau
(onset of extensive config. entropy)

Soluble models (range-free)
Self-consistent theory

Simulations




Main models to discuss today

Trivial thermodynamics
but

Non-trivial dynamics
due to
kinetic constraints



Topological ‘foam’

Minimalist topological model

E =) (n-6)

Different from usual foam

Prob. ~ exp@E/T

‘Glauber-Kawasaki’ T1 dynamics

_)

Euler:<n> = ¢

Ground state: hexagonal

Aste & Sherrington




Covalently bonded glasses

Two dimensions
(for simplicity)
sz Preferred angle at vertex = 1205% /3
Preferred crystal: hexagonal

Re-connections?

!

Randomly connected network liquid/
glass

/ | 4 Distorted bonds
T1

Energy of deviation ~ (0 — 27 / 3
n-sided polygon
- E ~ (n-6)2/(6n)2

Bonding

Re-connection

Euler: <n>=6




Results for topological model

Enerqgy: different starts Temporal autocorrelation fns
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Energy ,, Random start: T=x x Equilibrium Non-equillbrium
rer T>1 I J
Glass ///qu:d’ﬁ——‘ L \\\\\v\w |
v T Lowering T Increasing waiting time
Ordered start:T=0
{ of N}
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Theoretical understanding

Diffusion & Annihilation

A+B -0

Several types of ‘particle’ (A, B)

Some: Fast T-independent diffusion
Others: Slow T-dependent diffusion



Annihilation-diffusion

5-7 Dimers
7 (6) 6(5) Isolated defect
5>—<5 - 6
AnnWManon
6 5
5 >—<6 = 617 |
! A Energy barrier
Diffusion Activated diffusion

Fast




Energy or correlation function

Annihilation/diffusion
of dimers (fast)

of singletons (slow)




Lattice-based analogue

Hexagonal lattice

‘Spins: S.=1,0, -1
Energy: E = DZ S’
i

Conservation) . § =

Moves (Quasi-T1)

Dynamics: ‘Metropolis-Kawasakr’

@@ Equal

—> D>0: unique g.S., defects +1
@@ prob. qued

D<0: degenerate g.s., defects O




Energy/N

0.40 -
0.30 -
0.20 - - . o tw= 10N
© tw= 50N
L oo A tw= 100N
* tw= 500N
010¢% g % v tw= 1000N
o o Equﬂlbrlum
OOO L L L L
0.0 0.2 0.4 0.6 0.8 1.0
Temperature

(t,,= time at each temperature)

0.40
a a
0o®"” N
o
0.30 ,nn:ﬂﬂaw
°
e °
gg irauy % | ——
' =i B
. ¢ P00
0.10 125444 & e
U F . —C-w=10,000M
Ve {00, 000N —
—— Eaudibium =i |=
o‘w_,__"' ”_:_.. 3 1 —- |' _l- = L\ - 1 1
L @ G2 B8 G- -95- 68 07 08 0F

Temoerates:
(t,,= time following quench)

Curves = equilibrium; calculation easy since non-interacting

Falls out of equilibrium

Davison & S

Activation barriers

impenetrable at T=0
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Annihilation-diffusion







2 10" 10

Auto-correlation function

One move changes C(t) —» exp.

fast dimers: 1~2
slow singletons: 1~2exp(A/T)
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D<O

H :DZSZ; S =0,+1; Za = C

Highly degenerate ground state: {S;=*1}
Single defect type: 0
Single dimer type: (0,0):

A+A+A S A A+A - D

Different asymptotic decay exponent
Dimer diffusion can be blocked by disadvantageous environment



D < 0 results

Correlatio
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Sqguare lattice

Dimer -+ Singleton
moves + " : move




Summary of processes

e Dimer annihilation:
All involve



A simpler encapsulation?

e Desired features
— fast annihilation of dimers
— fast diffusion of dimers
— hindered motion of isolated defects

— all only with appropriate environments
» ‘4-changes’
— non-degenerate absorbing ground states
— Either single defect type (A) or two types (A,B)



Constrained ‘backgammon’

* Non-interacting ‘particles™ :Zn n<3

— Trivial equilibrium, unique absorbing g.s.

e Constrained dynamics

— Annihilation: analogue of dimer annihilation against

defect;
(n,n) - (=3 +1) ae-1

— Diffusion: analogue of dimer diffusion
(N,n)->M-2n+2) Rae=D

— Creation: analoaue of defect motion by dimer creation

(n.n) - (n _1’nj +3) Rate = 8 2F



Philosophy: follow number of A

 Dimer annihilation:
2A+A+@ - 3p+ A
2A+ A+@ - 3p+ A
 Dimer diffusion:
A+ A+20 o 20+ A+ A = (N.N) - (N -2n+2)
o Defect movement via dimer creation

= (n,n;) - (n—-3,n +1)

A+3p - @+ 2A+ A
A+30 - g+ 2A+ A

Dictionary: A ,A= defectsp = ground st:

> (n’nj)_’(n _1’nj+3)



Translation between ‘languages’

(n,n;)— (n—3,n, + 1)‘

(n,n)—(n, —1n + 3)‘

() — (n -2, + 2)

Gains or losses of
defects



Simulations

Equilibrium

Correlation function

d =2 (dashed)d =« (solic

Ce,(®/C5(0); Cet)=(ntn )
CE, (1) =Cyy ()= C%; €y =(n ()

Arrhenius decay

Relaxation Time

Inverse Temperature

Ca(1)=C(0)/7; t=0~T =0




Energy/particle number decay

Single type of particle

_Annihilation without diffusion

T=0.1 10° §
’ Dimer diffusion and annihilation
10°" 1 (occurs even at T=0)
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2 types of particle

N
H :Z(niA+niB); (niA+niB)S 3
i=1

— Annihilation: analogue of dimer annihilation against
T (aaB), X ] (R (AX) ] pae -
— Diffusion: analogue of dimer diffusion
[(ABX)i’Yj] —’[Xi’(ABY) j] Rate = D
— Creation: analogue of defect motion by dimer creation
[((AX);,g] -[X,(AAB) ] Rate=e?



Energy (particle number) decay

Single type of particle
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b FS) =) .
IS & [ o'- o
° 1

py
o

-t
on
»n

-
o

0.0 . .
10' 10* 10 10° 10"

X

10° 10° 10° 10° 10
Time

Final decayA A
d/2;d, 2

Two types of particle




Theory & simulation (infinite d)

Concentration decay
after quench

Out of equilibrium
correlation & concentration

T=1/6

Circles ~ simulation, lines ~ theory

Circles ~ correlation, squares ~ concentration




Other systems/models

e Background
e Other common models
e Extensions



Return to

Current philosophy

Glassiness through kinetic constre

Replace
Real interacting systems with simple constraints

by
Effective systems with no or weaker Hamiltonian
Interactions but more constrained dynamics

usually heuristic



Example

Spin-facilitated Ising models

Frederickson-Andersen

ldea: dense liquid
« Many regions of high density, few regions of lowdiy.

« Atomic motion only possible if enough nearby moloe-density
regions to facilitate

Model: SFIM
« Spins:l =dense; =dilute, H = Zi S — Jz(ij)asj
» Heat bath/Glauber/Metropolis dynamics

— but constrained
— spin-flip only if f=1 of neighbours are up (nearby dilute/ mobile region)

* Gives glassy dynamics
Usually ignored: H = Zi S



Field theory

Instantaneous disbution: P({n(t)})
Dynamics: Master egion:o0P({n(t)})/ ot = f( R{ n{ }})

State functios: U(t)=>  P{n(Hh(a) "..(a;)™.....[0)
fi

Involving creation operators

a'n{.n,n, ..a4nf..n+1n..}
Dynamics 0 W (t)/ot=HW(t)

H Non-Hermitian Hamiltonian,
Involving creation and annihilation opers

af.nn.... EH..n—In .}

Coherent state representation: c-number fields

Generating functional iegral: Z= f DpDp* exp(-S({p(t),0* (1)}))

Renamalization group.



Static phase transition to crystalline

order in present problem?

Include correlation energies in Hamiltonian

M{(0,+0,+0,-27)%

but not yet done



Model with ‘crystalline’ phase
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Broken Ising bonds, excited plaguett:

A Ny, (broken Ising bonds)
n (1 ~—

' 1
np(exmted plaguettes) np Glassy plateaux

\ n, ~exp D IT)

»
»

Schematic scale ﬁ ﬁ In t

Glassy plateau Ferromagnet



3-d? sp-bonds etc.?

« 3-d networks with spbonds:cf. a-silicon




Other rules?

Srong / fragile?
Above strong Lennard-Jones fragile
Both have foam-like structure
Covalent bonds  Dual Wigner-Seitz cells
But different energetics for changes
Mainly topology Softer



Spherical atoms: Voronoid cel

Motion of the spheres

Continuous range of positions and energies fromgreen to red

Srong to fragile?



Binary glasses

e 2 sizes of atom
— ? Topological analogue

— Eckmann:
 Two “colours” of plaquette, “red” & “blue”
e “red” want 5 sides, “blue” want 7 sides

H=>(n-5°+> (n -7)

blue

» But actually more subtle: packing “reds” together or
“blues” together they want to be 6-sided

— Also Euler’s theorem always true (independent of #,_,/ #

red blue



Conclusions

« Kinetic constraints can cause glassy
dynamics
— even with non-interacting Hamiltonian
— and trivial thermodynamics

e Can yield strong glass Arrhenius behaviour
— several simple models
 topological foams, idealized covalency
 constrained spins, multi-spin flips

» ‘backgammon’ with energetic rather than entropic
barriers

— soluble and significant in mean field limit
« Potentially interesting extensions



