Newly Discovered FeAs-Superconductors:

Opportunity and Challenge

Z. D. Wang (

The University of Hong Kong

2008.5.16 Peking University

Outline

- Historical Review
- Preliminary Experimental Results
 - 1. High Tc
 - 2. SDW at undopped state
 - 3. Multiband SC
 - 4. Unconventional SC
- Existing Theories
 - 1. Band Structure calculations: LDA
 - 2. Proposed Pairing Symmetry
- Our Minimal Model: two-band, d-wave pairing, SDW
- Our Microscopic Model and Calculations: intra- and inter band SF fluctuations
- Outlook

Brief historical introduction

- □ 1911: Onnes discovered superconductivity (Noble Prize)
- 1933: Meissner effect (Meissner & Ochsenfeld)
 - 1934: A two-fluid model (London brothers)
- □ 1950: Ginzburg-Landau theory (G-L)
- 1957: Type-I and type-II Superconductor (Noble Prize)
- 1957: Microscopic theory of conventional superconductivity (BCS) (Noble Prize)
- □ 1962: Josephson effect (Noble Prize)

- 1986: High-Tc superconductors LaBaCuO (Tc ~ 30K) (Bednorz & MÜller) (Noble Prize)
- □ 1987: Y 1 B a₂ Cu 3O 7 (Tc ~ 90K, Wu & Chu)

Microscopic BCS Theory for Conventional Superconductivity

$$H = \sum_{k,\sigma} (\varepsilon_{k} - \mu) C_{k\sigma}^{+} C_{k\sigma}$$

$$+ \sum_{k,k} V_{kk} (C_{k\uparrow}^{+} C_{-k\downarrow}^{+} \langle C_{-k\downarrow} C_{k\uparrow} \rangle_{k}^{+} + h.c.$$

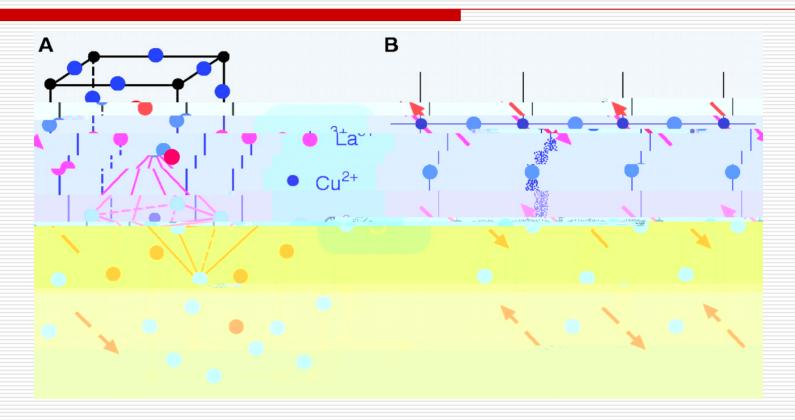
$$- \langle C_{-k\downarrow} C_{k\uparrow} \rangle_{k}^{*} \langle C_{-k\downarrow} C_{k\uparrow} \rangle_{k}^{+})$$

where

 $\langle C_{_{-k}\downarrow}C_{_{k}\uparrow} \rangle_{_{k}}$ is the Cooper pairing, whose order parameter

$$\Delta = -\sum_{k'} V_{kk'} \left\langle C_{-k'\downarrow} C_{k'\uparrow} \right\rangle_{k'}$$

High-Tc Copper-Oxides

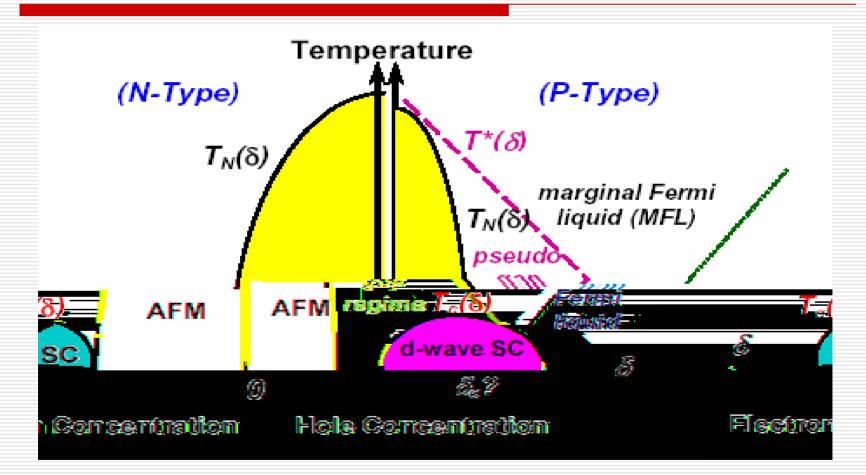


Crystal structure of La_2CuO_4 Schematic of CuO_2 plane

Main Understandings

- Doped Mott Insulators
- Main Physics in CuO₂ Planes Strong electronic correlation AFM spin correlation
- Superconducting state: rather normal; while normal state: abnormal;
- An Acceptable Microscopic theory is still awaited

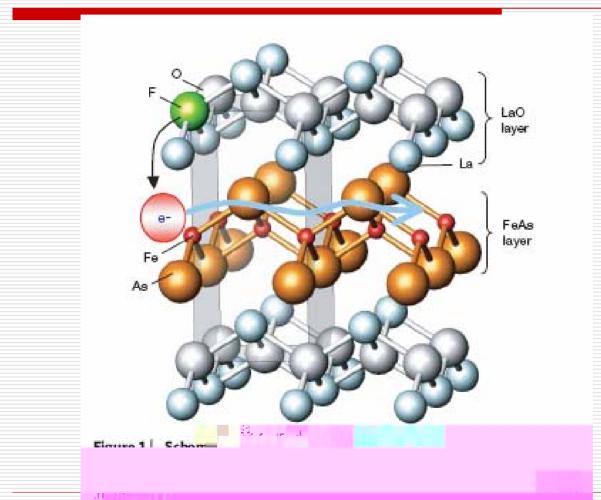
Schematic Phase Diagram



Fe-As SC: Experimental Results (I)

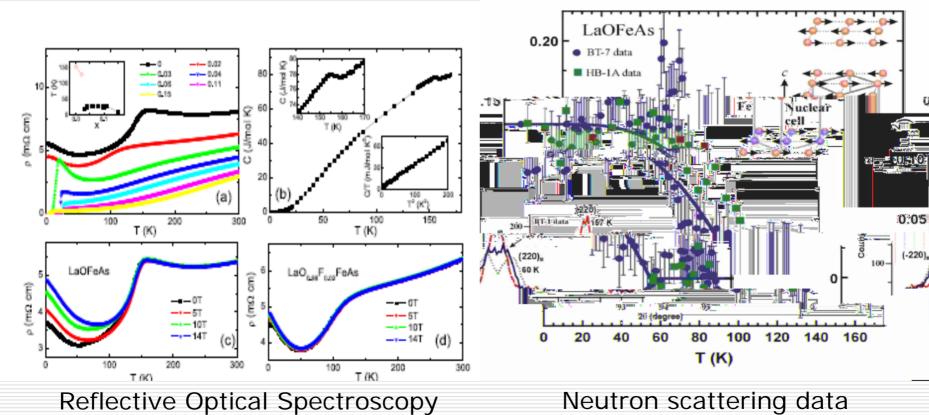
Higher Tc **Electron-doped Materials:** $LaO_{0.9}F_{0.1}FeAs = 26K$ CeO_{1-x}F_xFeAs 41K, SmO_{1-x}F_xFeAs 43K $PrO_{0.89}F_{0.11}FeAs 52K, \dots ReFeAsO_{1-x} 55K$ Hole-doped Materials: La_{1-x}Sr_xOFeAs 25K, etc.

Crystal Structure of LaOFeAsF

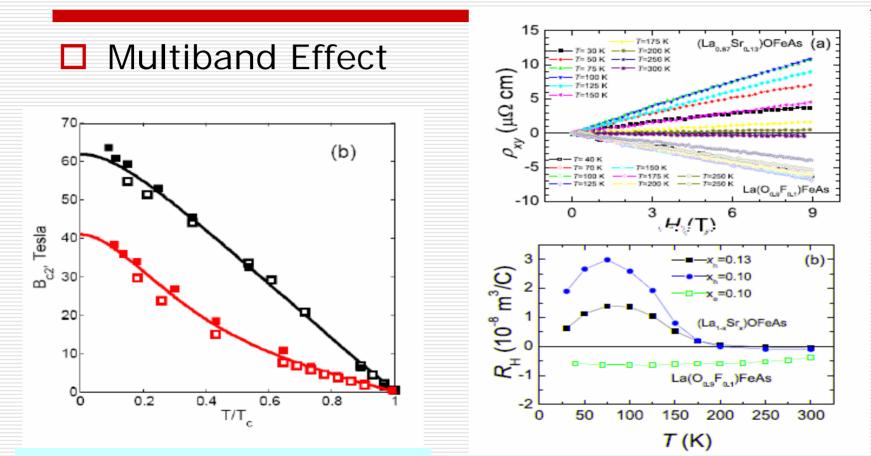


Experimental Results (II)

□ SDW in the normal state



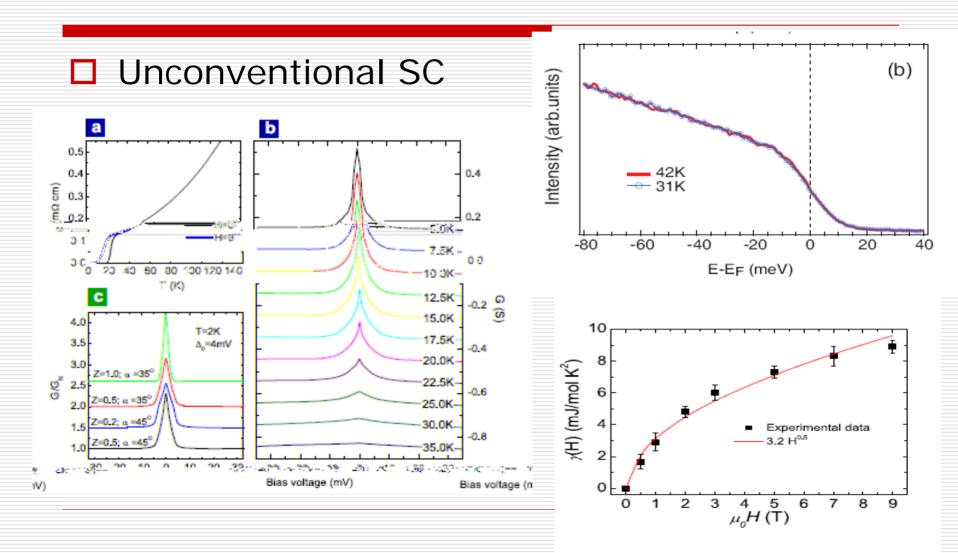
Experimental Results (III)



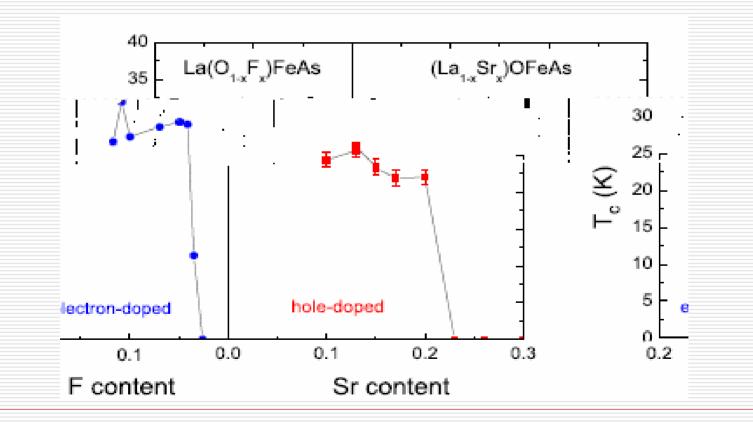
The lines corresponds to Bc2(T) calculated from the two-gap theory.

Temperature dependence of Hall resistivity was observed which may suggest a strong multiband effect in the electron-doped and hole-doped samples.

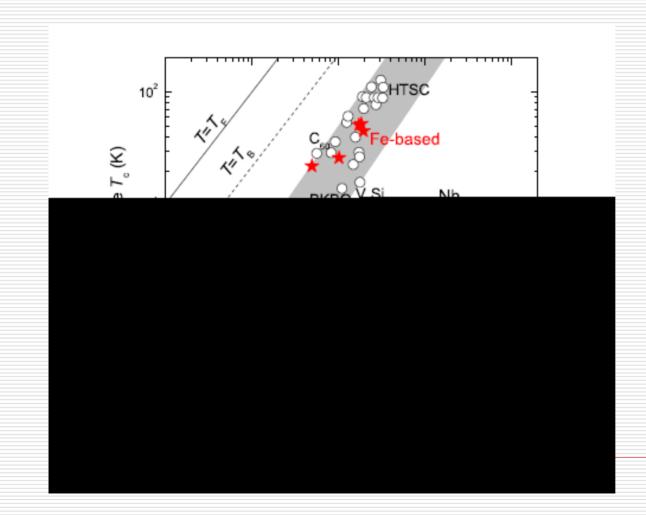
Experimental Results (IV)



Symmetric Phase Diagram (Electron-doping vs hole-doping)

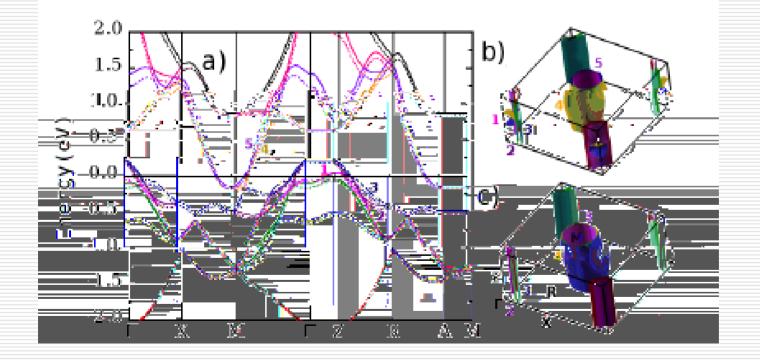


Tc vs TF_of unconventional superconductors (grey region)



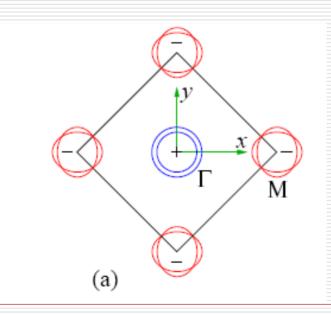
Band Structure Calculations (LDA, DMFT)

LDA (nonmagnetic structures)



Proposed Pairing Symmetry

- Extended s-wave
- Spin-triplet p-wave
- Spin-triplet orbit-singlet s-wave



Extended s-wave: FS pockets located around and around M, SC order parameters on the two sets of the FSs have the opposite signs.

Our Work and Main Findings

(1) Han, Chen, Wang, EPL 82, 37007 (2008); arXiv: 0803.4346
(2) Yao, Li, Wang, arXiv: 0804.4166 (2008)

- The normal state has an SDW order (Q=(,)), while upon the charge carrier doping the SDW order drops rapidly and the SC order emerges
- due to the two-band (electron and hole) SC nature of the material, Tc as a function of the effective doping density shows a nearly symmetric electron-hole doping dependence
- two-band superconducting state exhibits a d-wave symmetry (SDW fluctuations)
- Fluctuation-exchange approach on a microscopic twoband model yields quantitative results, supporting strongly our simple effective two-band model

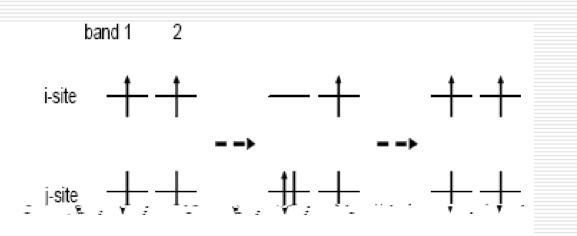
Our Minimal Model

2-band BCS d-wave pairing + intraband Hubbard interaction

Double-degenerated with each for one Fe-sublattice

Origin of the SC Pairing

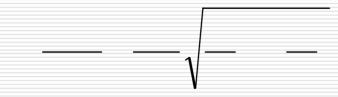
 $H_{i} = U \sum n_{il\sigma} n_{il\overline{\sigma}} + U' \sum n_{il\sigma} n_{i2\sigma'} + J_{H} \vec{\sigma}_{i1} \bullet \vec{\sigma}_{i2}$ ററ്



Origin of SDW Order

Condensate of bound electron-hole pairs "excitons"

$$1 = U_{eff} \chi_0^{12}(Q), \chi_0^{12}(Q) = -\sum_k \frac{f(\xi_{1k}) - f(\xi_{2k+Q})}{\xi_{1k} - \xi_{2k+Q}}$$



SDW State

Below T_{SDW}, the SDW ordering emerges, SDW order parameter is defined as

$$\Delta_{SDW} = U_{eff} \sum_{k} \langle c_{k\uparrow} d_{k+Q\downarrow}^{+} \rangle$$

$$1 = -U_{eff} \sum_{k} \frac{f(\eta_{2k} + \Omega_k) - f(\eta_{2k} - \Omega_k)}{2\Omega_k},$$

$$\Omega_k = \sqrt{\eta_{1k}^2 + \Delta_{SDW}^2}, \eta_{1k} = (\xi_{1k} - \xi_{2k+Q})/2, \eta_{2k} = (\xi_{1k} + \xi_{2k+Q})/2$$

SDW State

□ Counterpart of Cooper electron-electron pair $2\Delta_{SDW}/T_{SDW} \approx 3.53(BCS.result)$

According to optical conductivity spectra,

 $2\Delta_{SDW}(8K) \approx 350 cm^{-1} = 504K, T_{SDW} \approx 150K$ $so..2\Delta_{SDW}(8K) / T_{SDW} \approx 3.4$

The AF moment/Fe is estimated ~0.31, (exp. ~0.36);

Tspw decreases with the shrinkage of lattice.

SC State

Two band (hole and electron) SC

$$\Delta_{h} = \sum_{k} \gamma_{k} (J_{hh} \langle c_{-k\downarrow} c_{k\uparrow} \rangle + J_{he} \langle d_{-k\downarrow} d_{k\uparrow} \rangle),$$

$$\pi_{k\downarrow\downarrow} \Delta_{r} \equiv \sum \gamma_{e'\downarrow} (J_{\gamma} \langle d_{1k\downarrow} c_{d\downarrow} c_{\downarrow} \rangle + J_{he} \langle d_{-k\downarrow} d_{k\uparrow} \rangle),$$
At Tc, we have linearized gap equation,

$$J_{hh} K_{1} \quad J_{he} K_{2} \quad \Delta_{h} = \Delta_{h} \quad K_{1,2} = \sum_{k} \frac{\tanh(\xi_{1,2k} / 2T_{c})}{2\xi_{1,2k}} \gamma_{k}^{2}$$
Non-zero solution,
for Tc
$$det \begin{array}{c} J_{hh} K_{1} - 1 \quad J_{he} K_{2} \\ J_{eh} K_{1} \quad J_{ee} K_{2} \end{array} = 0$$

SC State

$$\Box \text{ General case: } J_{ee}, J_{hh} > 0, \ J_{ee}J_{hh} \ddagger J_{eh}J_{he} > 0.$$
$$\breve{J}_{hh} = J_{hh}/W_{h}, \breve{J}_{ee} = J_{ee}/W_{e}, \breve{J}_{eh}^{2} = (J_{eh}J_{he})/W_{e}W_{h}, \breve{JJ} = \breve{J}_{eh}\breve{J}_{he} - \breve{J}_{ee}\breve{J}_{hh}$$

We obtain,

$$\frac{T_c}{\sqrt{W_e W_h}} = \frac{e^{\gamma}}{\pi} [n_e n_h (2 - n_e)(2 - n_h)]^{1/4} e^{-\frac{1}{\lambda_{eff}}}, where$$

$$\frac{1}{\lambda_{eff}} = \left\{ \left[\left(\frac{1}{4} \, \widetilde{J} \widetilde{J} \, \ln \frac{n_e (2 - n_e) W_e^2}{n_h (2 - n_h) W_h^2} + \frac{\widetilde{J}_{hh} - \widetilde{J}_{ee}}{2} \right)^2 + \widetilde{J}_{eh} \widetilde{J}_{he} \right]^{1/2} - \frac{1}{2} \left(\widetilde{J}_{hh} + \widetilde{J}_{ee} \right) \right\} / \widetilde{J} \widetilde{J}$$

SC State

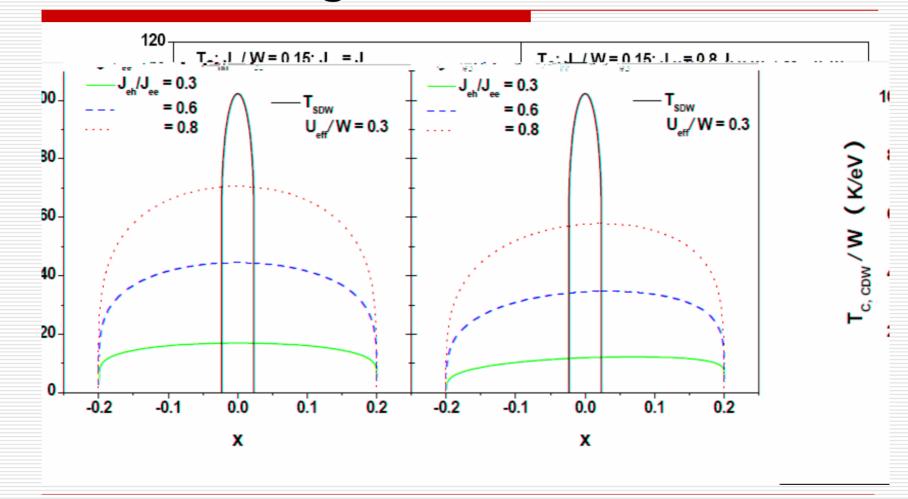
$$\Box \text{ Special case: } J_{eh}J_{he} = J_{ee}J_{hh}.$$

$$\frac{T_c}{\sqrt{W_e W_h}} = \frac{e^{\gamma}}{\pi} \left(\sqrt{\frac{W_e}{W_h}}\right)^{\frac{\breve{J}_{ee}-\breve{J}_{hh}}{\breve{J}_{ee}+\breve{J}_{hh}}} \left[\sqrt{n_e(2-n_e)}\right]^{\frac{\breve{J}_{ee}}{\breve{J}_{ee}+\breve{J}_{hh}}} \left[\sqrt{n_h(2-n_h)}\right]^{\frac{\breve{J}_{hh}}{\breve{J}_{ee}+\breve{J}_{hh}}} e^{-\frac{1}{\breve{J}_{ee}+\breve{J}_{hh}}}$$

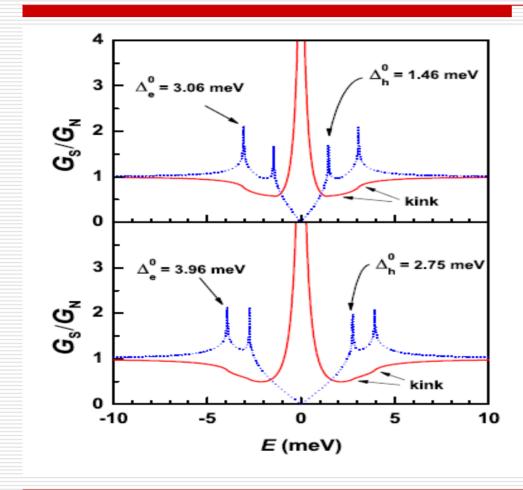
We choose the parameters as,

$$W_e = W_h = W, U_{eff} / W = 0.3, J_{eh} / W = 0.15, \varepsilon_0^{1,2} = 0.05W$$

Phase Diagram



Zero-bias Coherent Peak



Nodal d-wave pairing (two gaps behavior)

Useful Relations

$$\frac{|-\ln(|\Delta_h^0|/T_c) + C_0 - C_{T_c}|}{|-\ln(|\Delta_e^0|/T_c) + C_0 - C_{T_c}|} \times |r_0 r_c| = \frac{W_h}{W_e},$$

where $r_{0,c} = r(0), r(T_c)$ are respectively the above introduced gap ratio at zero and transition temperatures.

$$\frac{\ln|r_0|}{[1+(W_h/W_e)|r_0r_c|^{-1}](|r_c|-|r_0|)} = \frac{|J_{eh}|/W_h}{\tilde{J}_{eh}^2 - \tilde{J}_{ee}\tilde{J}_{hh}}.$$

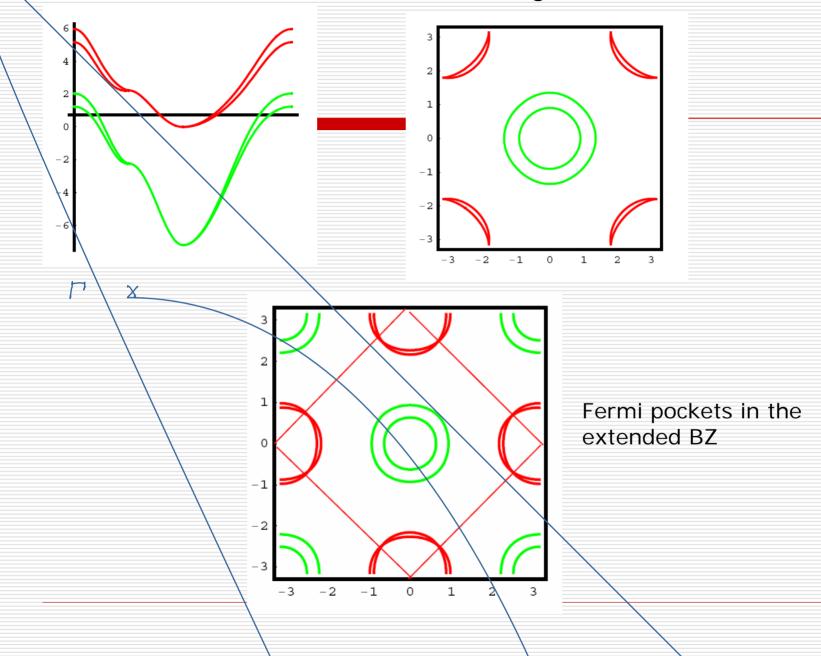
II. FLEX Results

Microscopic Model Hamiltonian

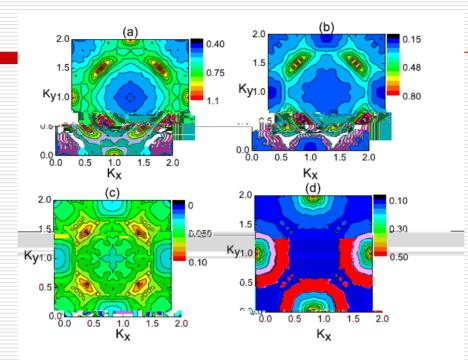
$H = H_0 + H_{int}$

The interacting term H_{int} consists of the effective intraband Coulomb interaction [27], $(U/2) \sum_{i,l,\sigma \neq \sigma'} c^{\dagger}_{il\sigma} c^{\dagger}_{il\sigma'} c_{il\sigma'} c_{il\sigma}$, the effective interband Coulomb interaction $(U'/2) \sum_{i,l \neq l',\sigma,\sigma'} c^{\dagger}_{il\sigma} c^{\dagger}_{il'\sigma'} c_{il'\sigma'} c_{il\sigma}$, the Hund's coupling $J \sum_{i,l \neq l',\sigma\sigma'} c^{\dagger}_{il\sigma} c^{\dagger}_{il'\sigma'} c_{il\sigma'} c_{il'\sigma'}$, and the interband pair-hopping term $J' \sum_{j \neq \sigma,\sigma'} c^{\dagger}_{i\sigma'} c^{\dagger}_{i\sigma'} c_{i\sigma'} c_{i\sigma$

Two-band structure in the reduced (original) BZ

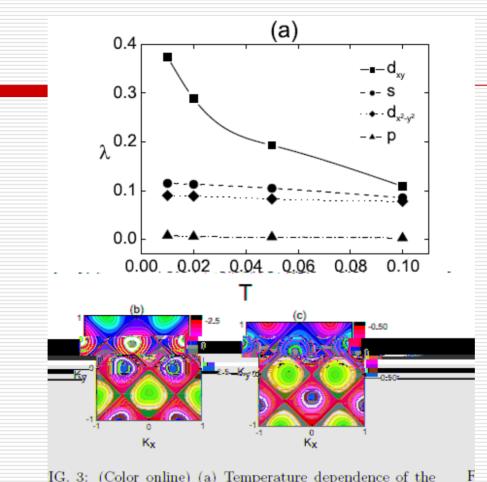


Spin susceptibility



IG. 2: (Color online) The q-dependence of the static spin \vec{J} is sceptibility calculated with U = 6.5, U' = 3.5, J = J' = 1 is temperature T = 0.01. (a) The physical spin susceptibility equation $(b)_7(c)$. The components of the spin susceptibility $\vec{\zeta}_{11}, \chi_{22}^s$ and χ_{12}^s , respectively.

Superconducting pairing



IG. 3: (Color online) (a) Temperature dependence of the aximum eigenvalues for U = 6.5, U' = 3.5, J = J' = 1.0. c) and (d): Momentum dependence of the gap functions $U_{11,22}(k)$ corresponding to the largest eigenvalue at temperture T = 0.01.

n

6

Δ

a

Outlook

- Origin of Fe-As Superconductivity: electron-electron interaction? If yes, intraband or interband SF fluctuations? Or both? Or doped Mott physics?
- Pairing symmetry: s-, d-, or p- wave ? To be determined by experiments on single crystals(?)
- 3. Profound understandings on the above two key points may provide some clue to resolve a long standing issue of copper oxide SC mechanism.
- 4. Even higher Tc above 77K?
- 5. Novel phenomena and physics?
- 6. Applications?

Superconductors redux

Yet another surprise has been uncovered in the complex oxides.

Thank you!