

8%

Struckture? Health Sensensenn Jon mostile 1. H. Tlank Intertank Structure, and LO2 Tank

Strain and Temperature

Information Processing and Display (DC-YA Elinhti ?? 2*ຝາກຖະກະປາງອາດປາການອາດາຍອີການອາດາຍອີການ due to engine firing and thermal stresses)

Adolph Martens

Martensite

Robert Austen

450x

International Conference on Martensitic Transformation, ICOMAT 1976 2005

twinning

%'& 5i!7X

%)% 5i!7X %)' =b!H

% *' ž 6i Y\`Yf B] H] ž B] h] bc` fBUj Ư Cf XbUbWY @.Vcf Uhcf mŁ ž

% fl Ł &" • % !! &" fl !! Ł

UNIVERSITY BEIMANG

NiTi , , , Cu-Al-Ni,Cu-Zn-Al), _ Fe-Mn-Si

, , , ž 7i ; Y B] H] ž B] H]

"

"

"

"

"

"

,

))

&\$\$

BEIHANG UNIVERSITY

环球经贸网 GNOWEC COM)

Heusler

1984

200 mm

Ms(K) =74.21X_{Ni} + 40.42X_{Mn} - 4536.048

0.2%

\$" &%

K. Ullakko, et al. Appl. Phys. Lett. 69 (1996)1966

2000 6%2002 9.5%

zone melting

Unidirectionally solidified samples grown under $\underline{G}_{\underline{L}}$ <u>500K/cm</u> and <u>V=10mm/h</u> with different melting zone length L and interface concave height h (a) L = 6mm h=1.65mm, (b) L = 11mm h=1.34mm,(c) L = 19mm, h = 1.04mm.

Unidirectionally solidified samples grown under $\underline{G}_{\underline{L}}$ <u>1200K/cm</u> and <u>V=10mm/h</u> with different melting zone length L and interface concave height h (a) L = 8mm h=0.65mm, (b) L = 10mm h=0.27mm.

m京航空航天大学 Jiang CB etal, ACTA MATERIALIA 53 (2005):1111 Beihang University

 $(T_m^4 T_0^4)R$ $2(G_L LV)$

Single crystal grown under $\underline{G}_{\underline{L}}$ <u>1500K/cm</u> and <u>V=10mm/h</u>, the melting zone length L=17mm, and the interface concave height h=-0.48mm.

mang university Jiang CB etal, ACTA MATERIALIA 53 (2005):1111

R. Kainuma

Nature

R. Kainuma, et al. Nature 439 (2006) 957

NiMnGaCu

G

NiMnGaCu

北京航空航天大学 BEIHANG UNIVERSITY

Maryland

helicopters. The project, performed in collaboration with the <u>Alfred Gessow Rotorcraft Center</u> at the University of dfmillearly and with a Bineiron Grand or <u>performation of the second provided of the second provided of the second primary rotor control</u>.

The TSi Smart Flap system utilizes single crystal, martensite, NiMnGa materials with superior force, stroke and frequency response properties to actuate on-blade trailing-edge flaps. "The use of Smart Flaps has the potential to reduce helicopter control complexity, cost, and maintenance requirements," says Chen.

NiMnGa

北京航空航天大學

UNIVERSITY

BEIHANG

Appl. Phys. Lett. 82 2003 3206-3208

: Y

B] Ab; L

7i

7i B] Ab; U7i

