

Condensed Matter Physics Forum, Peking U. June 4, 2015

Sheng Meng () Institute of Physics, Chinese Academy of Sciences 2015.6.4

First-principles contribution to understanding the vision process. Photoisomerization processes in retinal and other bio-photoreceptors

Experimental Observations

Schmitt et al. Science **321**, 1649 (2008)

Cavelleri et al. PRB 89, 184516(2014);Nature (2014)

$$M_J \frac{d^2 \mathbf{R}_J^d(t)}{dt^2} = -\nabla_{\mathbf{R}_J^{cl}} \left[V_{ext}^J(\mathbf{R}_J^{cl}, t) - \int \frac{Z_J \rho(\mathbf{r}, t)}{|\mathbf{R}_J^{cl} - \mathbf{r}|} d\mathbf{r} + \sum_{I \neq J} \frac{Z_J Z_I}{|\mathbf{R}_J^{cl} - \mathbf{R}_I^{cl}|} \right]$$

Computational efficiency

10²

10¹

60

MQ

Memory (MB)

Real space grid

40 Number of Valence Electrons

Optical properties of clusters and molecules from real-time time-dependent density functional theory using a selfconsistent field J. Ren, E. Kaxiras, S. Meng, Mol. Phys. 108, 1829 (2010).

Clouds = e density in excited state

Real time TDDFT for electron-ion quantum dynamics OUTLINE

- I. <u>Background: building computational tools for excited state</u> <u>dynamics</u>
- II. <u>Photovoltaic applications</u>
 - interface control in perovskite solar cells
 - electron-hole dynamics in 2D materials heterojunction
- III. Photosplitting dynamics
 - orbital dependent quantum interaction of water
 - photolysis dynamics of H₂

photovoltaics

Dye solar cell: A 3rd Generation Solar Cell

9

++

From http://www.solaronix.com

State of the Art

Can we predict DSC efficiency from first-principles?

 $P_{inc} = 100 \text{ mW/cm}^2$

Injection: (1), $10^{-15} \text{ s} \sim 10^{-12} \text{ s}$ Relaxation: (5) $10^{-12} \text{ s} \sim 10^{-9} \text{ s}$ Collection 5 A: $10^{-6} \text{ s} \sim 10^{-3} \text{ s}$ Recombination: (3),(4), $10^{-12} \sim 10^{-3} \text{ s}$ Reduction: (2), 10^{-9} s

Ma, Zhang, Meng, Chin. Phys. B 23, 086801 (2014).

PANDORA: Predictive algorithms for nano device operation rate assessment

Ma, Jiao & Meng, J. Phys. Chem. C, invited article (2014).

$\mathbf{H}) \quad \lambda = \mathbf{p} \left[\varepsilon \rho \quad d(-\varepsilon \rho x) \right] x$

 TiO_2 film thickness: d = 3 dye loading: 300 mmol/L

Zhang, Ma, Jiao, Wang, Shan, Li, Lu, Meng, ACS Appl. Mater. Interface (2014).

Electron Injection Dynamics

Electron Injection Dynamics

Electron Injection Efficiency

Ma, Jiao & Meng, J. Phys. Chem. C (2014).

Different anchors

a) Bartelt et al. JPCC (2014).

Hot electron effect

Solvent effect

e = 0.00 ps

Experiment: 5 times difference using ultrafast laser photolysis. Ma, Jiao, <u>Meng</u>, PCCP (2013).

Electron Collection Efficiency

η

$$J_{\underline{\alpha}\underline{\alpha}} = \int J(\lambda) d\lambda = \int \frac{SI}{\frac{1}{2m/\sqrt{2}\lambda}} IPCE(\lambda) d\lambda$$

Estimating the $V_{\rm OC}$

Þ	k ⁻¹ ,i	k ⁻¹ e	$J_{s}/$	V _{oc}	F	J_{s} (p) (c) (2)	V _{oc} (p)) (Ma	(þ		
D	9	3	8	3	8	4	5	5	9 ⁄0	8 ⁄0
D	9	2	6	Ð	0				3 ⁄0	
D	g	8	2	6	8	3	5	6	T ⁄o	Vo
				Rod	· Theo	r\/	Blue: Ev	nerimen	.t	

ILEU. INEURY

D:

Quantum mechanics based, parameter free

Close to experiment values:1-2%

Dye	Y1	Y1b	Y 1b2	
Theory (%)	3.6	11.6	21.9	
Expt. (%)	2.4	?	?	

Jiao, Ma, Meng, Chem. Phys. Lett. (2013).

η 2.4% 6.1%

F. Zhang et al., JPCC (2013).F. Zhang et al., ACS Appl. Mater. Inter (2014).

Perovskite solar cell $\eta = 20.1\%$

Anomalous hysteresis

Snaith et al. JPCL (2014).

Band Structure

DFT+U (U=4.2 eV)

	1		N	•
_{jn} / £	8	9	5	B
e / p	9	3	б	8

j

KapKapKapKapKapKapKapKap

æ Þ

Experiment: Photoluminescence Spectra

MA Orientation

Molecular Dynamics Simulation at 350 K

والمراجع وا

500 1000 1500 Time (fs)

Injection and Recombination Dynamics

Dramatic difference in recombination rates

Real time TDDFT for electron-ion quantum dynamics OUTLINE

- I. <u>Background: building computational tools for excited state</u> <u>dynamics</u>
- II. <u>Photovoltaic applications</u>
 - interface control in perovskite solar cells
 - electron-hole dynamics in 2D materials heterojunction
- III. Photosplitting dynamics
 - orbital dependent quantum interaction of water
 - photolysis dynamics of H₂
 - NV center dynamics

Collaborators:

Prof. Efthimios Kaxiras (Harvard) Prof. S.B. Zhang (RPI) Prof. S.W. Gao (CSRC) Prof. G. Lu (CSUN) Dr. Z. Li (CSUN) Prof. Z.Y. Zhang (USTC) Prof. E.G. Wang (PKU) Prof. X.F. Guo (PKU) Prof. X.C. Zeng (UNL) Prof. L. F. Xu (IOP-CAS) Dr. Junyeok Bang (RPI) Dr. Maria Fyta Dr. Jun Ren Dr. Tom Baker Dr. P. Maragakis (DE Shaw Co.) Dr. C. Papaloukas (Ioannina U) Dr. Md. K. Nazeeruddin (EPFL) Prof. M. Graetzel (EPFL)

Wei Ma Fan Zhang Jin Zhang Lei Yan Huxia Fu Cai Cheng Fei Gao Zijing Ding Yang Jiao

Dr. Hui Li Dr. Jiatao Sun

http://everest.iphy.ac.cn

smeng@iphy.ac.cn

