11 04

•

•

- GaAs and Al_xGa_{1-x}As (or InGaAs/InAIAs) are latticematched, can be grown on top of each other defectfree.
- Different gap energies in GaAs and Al_xGa_{1-x}As form quantum wells.
- Molecular Beam Epitaxy (MBE) can grow layer by layer, atomically smooth.
- In essence, with MBE we can design and grow "Artificial Atoms" or " artificial molecules." We can control the size of wells and relative energy levels.

λ>2μm

400 ... ,,

6

III-V

IV-IV II-VI

R. F.Kazarinov, R.A.Suris, Sov. Phys.Semicond. 5, 707 (1971)

(QCL)

(InGaAs InAlAs) 1nm

In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As

7.8 μm

In_{0.6}Ga_{0.4}As/In_{0.44}Al_{0.56}As

5.6 µm

SEM

27 Semicond. Sci. Technol. 15_ L44(2000)

As, P, In, Ga, Al, Si

Compositions (InGaAs, InAlAs)
Growth rates
Doping
InP growth
Strain-compensation
OCL structures

6. QCL structures

Composition: $In_{0.52}Al_{0.48}As$ V/III ration 20, Sub =515°C

Double crystal X-ray diffraction result

InP growth

Cracker: 950°C, conversion P₄ to P₂.

Red p: 350-360°C

White P: 80-90 °C

 P_2 pressures:0.2-2×10⁻⁵ Torr P_2 /In flux ratios : 5-25

valved cracker of P

sub=490°C, V/III ratio=15-22

sub=460°C, V/III ratio=10

Optimal growth parameter: Sub= 490°C, P_2 /In = 20:1, Growth rate: 0.6-0.9mm/h. We can grow QCL materials on condition that :

> Precise control: each layer thickness, compositions, doping, interfaces sharpness.

(36meV)

 $\lambda = 1.24/(E_3 - E_2)$

 $\Delta E = (0.56 - 0.62) V_{bc}$

InGaAs/InP

In_xGa_(1-x)As $x = 0.532 + 7.2 \Delta a_{\perp}/a_s$ In_yAl_(1-y) $y = 0.523 + 7.4 \Delta a_{\perp}/a_s$

QCL structure

InGaAs	5×10 ¹⁸ cm ⁻³	400nm
InP	$\frac{5 \times 10^{18} \text{cm}^{-3}}{1 \times 10^{17} \text{cm}^{-3}}$ \uparrow	2500nm
InGaAs	$1 \times 10^{17} \text{cm}^{-3}$	350nm
(Active+Injector)	×30	
InGaAs	$1 \times 10^{17} \text{cm}^{-3}$	300nm
InP substrate	n-doped	

In_{0.669}Ga_{0.331}As/In_{0.362}Al_{0.638}As

QCL

4.8µm 4.6µm QCL
X X X
60
$$\Lambda = \frac{(i-j)\lambda}{2(\sin\theta_i - \sin\theta_j)}$$

QCLs

λ~4.6

QCL

Appl.Phys.A 97, 527 (2009) 49

λ~7.4µm

Fabry-Pérot

QCL

QCL $d\lambda_0 = \frac{\lambda_0^2}{2nL}$ 52

441.6 nm

DFB-QCL有源区及波导结构

Distance (µm)

c: 一维模式分布

Wet Etch HBr: HNO₃: H₂O=1: 1: 20

光栅刻蚀

Ar₂: CH₄: H₂=5: 18: 45

55

室温工作表面金属光栅DFB-QCL

掩埋光栅DFB-QCLs的连续工作

锥形DFB远场特性

59

锥形DFB-QCL水平远场模拟

Electronics Letters 45, 53(2009)

DFB-QCL Electronics Letters 45, 53(2009)

Electronics Letters 45, 53(2009)

(1,2)

4.7

QCL

69

QCL

QCL

(a) G358

(b) G085

a G358 b G085

OZ

a G358 b G085

167ppb

3THz 88K

Electron. Lett. 46(19)_1340(2010)

Electron. Lett. 46(19)_1340(2010)

 $In_xGa_{1-x}As/In_vAl_{1-v}As$ QCLs: : 3.5μm, 4.6μm, 4.7μm, 4.8μm, 5.2μm, 5.5μm, 5.7μm, 7.4μm, 7.8μm, 8.9μm. **4.6μm, 7.4μm**. **OCLs OCLs; DFB-OCLs: OCL**; **GaAs/AlGaAs QCLs:** 9.1--11.4 μm **THz-OCLs** 14mW

, Superlatt.Microstruct. 37, 107–113 (2005)

Challenges and Frontier(1). GaNQCLsTHz-QCL(2). Surface plasmonic structures(3).85