GRAIN BOUNDARY STRUCTURE and DEFECTS

Louisette PRIESTER

Professor emerita Université Paris 11 - Orsay ICMPE / CNRS, Thiais, France

> 1st Lecture Beijing 2008

A GRAIN BOUNDARY at DIFFERENT SCALES

I) GEOMETRICAL ORDER: BICRYSTALLOGRAPHY

TRANSLATION LATTICE OF GRAIN BOUNDARY

0 LATTICE

Locus of invariant points in the transformation : crystal $1 \Rightarrow$ crystal 2

Fondamental equation

If $\tau = 0$ (Bollmann) $\mathbf{x}_0 = \mathbf{R} \, \mathbf{x}_0 + \mathbf{B}_m$ $(\mathbf{I} - \mathbf{R}^{-1}) \, \mathbf{x}_0 = \mathbf{B}_m = \Sigma \, \mathbf{b}_m$ $\mathbf{b}_m = \text{Burgers vector for crystal}$

Properties

- Continuous function of the misorientation θ
- Any 0 point is an origine for the rotation

 •••••	••••	•••••
 ••••••	•••••	•••••
 • • • • • • •	• • • • • • •	
 • • • • • • • • •	•••••	•••••
 	• • • • • • •	* * * * * * * * * *
 • • • • • • •		

	•	• •		•		•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•				•	•	•	•	-	•	•	-	•	-	•	-	•	•	•	•	•	•	-	•	-	•	
-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-				-		-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-		-	
-	-							-	-			-	-	-	-		-		-	-		-	-	-	-	-	-
		•																									
		•			•	•				•							•			•			•	•			
•	•	• •		•	•		•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

. • • 8 -. • -. • -----. •• •• •• • -.... • • - . . . • -. • 80 . . 6

II) STRESS ORDER :

INTRINSIC DISLOCATIONS

BOLLMAN's MODEL for any GRAIN BOUNDARY

INTRINSIC DISLOCATIONS (Bollmann)

Discretization of the deformation

For energetic reason, the GB tries to maintain a maximum number of common sites: - of the single crystal \Rightarrow Points 0 - of the coincidence lattice \Rightarrow Points 02 The stresses are localized between the regions of good fit (good material) ↓
Intrinsic dislocations (bad material)

2 Invariants	Deviation	Good fit	Bad fit	What GB ?
Crystal	θ	0 lattice Common points of the two crystal lattices	Primary Dislocations $\mathbf{b} = \mathbf{b}_{m}$	Low angle GBs Coincident GBs
CSL	Δθ	02 lattice Common points of the two DSC lattices	Secondary Dislocations $\mathbf{b} = \mathbf{b}_{\text{DSC}}$	Any GB

. • • 8 -. • -. • -----. •• •• •• • -... • • - . . . • -. • 80 . . 6

 $\Sigma = 3 \{111\}$ GB in nickel - $\Delta \theta = 0.09^{\circ}$

III) ATOMIC ORDER: STRUCTURAL UNIT MODEL

ATOMIC ORDER : STRUCTURAL UNIT MODEL

- Geometrical consideration (hard spheres)
- Simulations
- HRTEM

ENERGY

Energy localisation

• GB width ≈ 0.5 nm

Fine GB structure

⇒ Any GB is constituted by polyedral units of atoms Structural Unit (similarity with elemental cells of crystal)

Energy by sites

 $\Rightarrow Prevision of the interstitial and substitutional sites$ $<math display="block">\bigcup$ SEGREGATION

DIFFERENT STRUCTURAL UNITS FOUND IN GRAIN BOUNDARIES

GB period : $\mathbf{p} = m \mathbf{u}_A + n \mathbf{u}_B$

simple principle BUT COMPLEXITY Hierarchy of descriptions

Description in terms of Structural Units (SU)

HRTEM image

Simulation

STRUCTURAL UNITS/ INTRINSIC DISLOCATIONS

	T	Α					
	1	Α					
	Ŧ	Α					
Secondary Dislocation	Ì.	В	Minority unit				
	Т.	Α	and the second				
	T	А				See.	
to a		Α					
	L	В					
	T	Α					
Ten de				18-A	19-6		

SU/GBD MODEL USEFULNESS AND SHORTCOMINGS

Long range order

No translational symmetry \Rightarrow Quasiperiodic structure

IV) GRAIN BOUNDARY DEFECTS EXTRINSIC DISLOCATIONS

GRAIN BOUNDARY EXTRINSIC DISLOCATIONS

Extrinsecus = from Outside

Towards equilibrium

 $\mathbf{R} \Rightarrow \mathbf{R'}$

 $(I - R'^{-1}) p = B'$

EXTRINSIC = NON EQUILIBRIUM \Rightarrow LONG RANGE STRESSES \downarrow Accommodation INTRINSIC = EQUILIBRIUM \Rightarrow SHORT RANGE STRESSES

EXTRINSIC DISLOCATIONS/STRUCTURAL UNITS

Defect = Rupture of periodicity

Addition or removal of one SU = Extrinsic dislocation

b must be compatible with the GB structure

Example of Extrinsic Grain Boundary Dislocations (EGBDs) in a tilt GB

Near Σ 3 GB in copper

Note the strong EGBD image constrast compared to that of the IGBDs

EQUILIBRIUM / NON EQUILIBRIUM

		CRYSTAL	GRAIN BOUNDARY						
	Periodic arrangement of atoms	3D	2D and						
EQUILIBRIUM			Periodic network of intrinsic dislocations						
	Point	Vacancies Substitutional Interstitial	Vacancies Segregated atoms *						
DEFECTS	Linear	Dislocation	Extrinsic dislocation						
	Planar	Stacking faults Grain boundaries	Facets						
	Volume	Precipitates	Precipitates *						
* Second lecture									